to misfold into an alternative helix in vitro. Intragenic suppressor mutations that disrupt the misfolded helix or strengthen the correct helix alleviate the requirement for Lhp1p, providing evidence that the anticodon stem misfolds in vivo. Chemical and enzymatic footprinting experiments suggest a model in which Lhp1p stabilizes the correctly folded stem. Lhp1p is also required for ef®cient aminoacylation of two wildtype tRNAs when yeast are grown at low temperature. These experiments reveal that pre-tRNAs can require protein assistance for ef®cient folding in vivo.
The La protein is a ubiquitous nuclear phosphoprotein that recognizes the 3' uridylates found in all newly synthesized RNA polymerase III transcripts. La binding stabilizes these transcripts from exonucleases and may also assist their folding. Here we present the first structural insights into how the La protein specifically interacts with its RNA substrates. The most conserved region of the La protein is the La motif, a domain also found in several other RNA-binding proteins. We have determined the structure of the La motif from the Trypanosoma brucei La protein to 1.6 A resolution (PDB code 1S29). The La motif adopts a winged helix-turn-helix architecture that has a highly conserved patch of mainly aromatic surface residues. Mutagenesis experiments support a critical role for this patch in RNA binding and show that it partly determines binding specificity for RNAs ending in 3' hydroxyl, a defining characteristic of the La protein. These findings reveal that the La motif is essential for high-affinity binding and also contributes to specificity.
Temperature-sensitive (Ts) mutants are a powerful tool with which to study gene function in vivo. Ts mutants are typically generated by random mutagenesis followed by laborious screening procedures. By using the Escherichia coli cytotoxin CcdB as a model system, simple procedures for generating Ts mutants at high frequency through site-directed mutagenesis were developed. Putative buried, hydrophobic residues are selected through analysis of the protein sequence. Residue burial is confirmed by ensuring that substitution of the residue by Asp leads to protein inactivation. At such sites, a Ts phenotype can typically be generated either by (i) substitution of two predicted, buried residues with the 18 remaining amino acids or (ii) introduction of Lys, Ser, Ala, and Trp at three to four predicted buried sites. By using these design strategies, 17 tight Ts mutants of CcdB were isolated at four predicted buried sites. The rules were further verified by making several Ts mutants of yeast Gal4 at residues 68, 69, and 70. No Ts mutants of either protein have been previously reported. Such Ts mutants of Gal4 can be used for conditional expression of a variety of genes by using the well characterized upstream-activatingsequence-Gal4 system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.