HS concentrations and the enzymes that synthesize it are significantly increased in OSCC. Here, for the first time HS concentrations within a living human malignancy were measured and compared to adjacent counterpart benign tissue.
Background: Cystathione β-synthase (CBS) catalyzes the conversion of homocysteine and cysteine to hydrogen sulfide (H 2 S) and cystathione, via the transsulfuration pathway. CBS protein expression levels are increased in several different human malignancies, with increased protein expression correlating with parameters such as tumor stage, anaplasia, metastases, and chemotherapy resistance. Materials and Methods: This study employed tissue microarrays to examine CBS expression in benign thyroid tissue, thyroid oncocytomas, thyroid follicular adenomas, and in follicular, papillary, anaplastic, and medullary thyroid carcinomas. Results: CBS expression was increased in all thyroid carcinomas types compared to benign thyroid tissue, but not in thyroid follicular adenomas or oncocytomas. A similar pattern was observed for nicotinamide phosphoribosyltransferase (NAMPT) tissue microarray analysis comparing thyroid adenomas and follicular carcinomas. Conclusion: For the first time, we showed that an H 2 S-syntheszing enzyme plays a role in thyroid malignancies. Additionally, our data suggest that CBS and NAMPT immunohistochemistry may be useful in differentiating follicular adenomas from follicular carcinomas.
Adenoid cystic carcinomas (ACC) constitute 1% of all head and neck malignancies and are very rare in the oral cavity. With < 60 oral ACCs described, their pathobiology is incompletely understood. Here, we report a case of oral cavity ACC in a 54-year-old woman. Since recent studies have demonstrated that several human tumors overexpress the hydrogen sulfide (H2S)-synthesizing enzymes cystathionine-β-synthase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3-MST), and also show dysregulated H2S levels, we examined these biomarkers in the oral ACC and compared the results to those of adjacent benign oral epithelium. Western blotting was used to compare the protein expression of CBS, CSE, 3-MST, nicotinamide phosphoribosyl transferase, and mitoNEET in ACC and adjacent benign oral mucosae. High-performance liquid chromatography was used to quantify the differences in tissue H2S concentrations between the two biopsy types. We found that all the proteins examined here were increased in the ACC compared to adjacent benign oral mucosae. Interestingly, H2S concentrations were decreased approximately 30% in ACC compared to benign mucosae. Thus, in one example of this rare tumor type, the enzymes that synthesize H2S are increased, while tissue H2S levels are lower than those found in adjacent benign oral mucosae. Although limited to a single rare tumor type, to our knowledge this is the second time H2S concentrations have been directly quantified inside a human tumor. Last, our results may indicate that alterations in H2S synthesis and metabolism may be important in the pathobiology of ACC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.