Design and testing of a prototype probe with high B 1 magnetic field homogeneity that can be used for MRI is presented. It consists of four coaxial separately tuned rings of wire in a symmetric arrangement on an ellipsoidal surface. Compared to Helmholtz pair, which presents 2nd-order homogeneity, an improvement in field homogeneity is achieved, while preserving the simplicity of implementation. The proposed probe has an identical self-resonance frequency for all coils to allow easy tuning. The position and diameter of each ring are optimized so that the assembly produces a 6th-order homogeneous field. A complete electrical model of the four-coil system taking into account all coupling effects permits to determine the resonance frequency in the co-current mode and consequently to predict the value of the tuning capacitors. Resulted field homogeneity of the proposed four-coils are compared to that of Helmholtz coil which shows an improvement of 58% in field homogeneity profile when considering 10% profile uniformity width. Moreover, compared to the homologous Helmholtz coil, the proposed four-coil prototype possesses a better quality factor and therefore leads to an improved Nuclear Magnetic Resonance (NMR) sensitivity.
Problem statement:The oxidation ditch system has been used to treat various types of wastewaters. Several types of aerators are used to supply the treatment process with oxygen. Among these devices, the disc aerator has certain advantages regarding foam generation over the brush and paddle type rotors, but the main disadvantages of this aerator is the limited oxygenation capacity. The main objectives of this study were to study the effects of various design parameters and system operation parameters on the oxygenation capacity of the system. Approach: A bench scale oxidation ditch system equipped with a disc aerator was used to gain better understanding of the phenomena of oxygen transfer and to study the effects of hole diameter, number of holes per disc, disc thickness, disc speed, immersion depth and number of discs on the oxygenation capacity of the system. The unsteady state method with sulphite oxidation was used to deoxygenate the water. The test involved chemical removal of dissolved oxygen from water followed by oxygenation. The power consumed was measured, the oxygen transfer coefficient was determined and both the oxygenation capacity and oxygenation efficiency were calculated. Results: The oxygen transfer coefficient was affected by the immersion depth, hole diameter, disc speed, disc thickness and number of discs, with the disc speed having the greatest effect. The results showed that three physical processes simultaneously contributed to oxygen transfer by the disc aerator: bubble aeration, eddy aeration and surface aeration. Conclusion: The use of sodium sulphite with cobalt chloride for deoxygenation of the water via the oxidation ditch was effective and the results were very consistent and repeatable. The aerator disc of 2.55 cm thickness, 1.92 cm diameter and 48 holes was found to achieve the highest oxygenation capacity. The system is anticipated to provide a broad range of oxygen transfer rates under actual conditions (23-164 mgO 2 /L-h) to meet varying process demands encountered in aerobic treatment systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.