This work communicates a review on Balmer series hydrogen beta line measurements and applications for analysis of white dwarf stars. Laser-induced plasma investigations explore electron density and temperature ranges comparable to white dwarf star signatures such as Sirius B, the companion to the brightest star observable from the earth. Spectral line shape characteristics of the hydrogen beta line include width, peak separation, and central dip-shift, thereby providing three indicators for electron density measurements. The hydrogen alpha line shows two primary line-profile parameters for electron density determination, namely, width and shift. Both Boltzmann plot and line-to-continuum ratios yield temperature. The line-shifts recorded with temporally-and spatially-resolved optical emission spectroscopy of hydrogen plasma in laboratory settings can be larger than gravitational redshifts that occur in absorption spectra from radiating white dwarfs. Published astrophysical spectra display significantly diminished Stark or pressure broadening contributions to red-shifted atomic lines. Gravitational redshifts allow one to assess the ratio of mass and radius of these stars, and, subsequently, the mass from cooling models.
Spectral measurements of the H(α) Balmer series line and the continuum radiation are applied to draw inferences of electron density, temperature, and the level of self-absorption in laser ablation of a solid ice target in ambient air. Electron densities of 17 to 3.2×10(24) m(-3) are determined from absolute calibrated emission coefficients for time delays of 100-650 ns after generation of laser plasma using Q-switched Nd:YAG radiation. The corresponding temperatures of 4.5-0.95 eV were evaluated from the absolute spectral radiance of the continuum at the longer wavelengths. The redshifted, Stark-broadened hydrogen alpha line emerges from the continuum radiation after a time delay of 300 ns. The electron densities inferred from power law formulas agree with the values obtained from the plasma emission coefficients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.