Hansen 536' (Prunus dulcis 3 Prunus persica) is an important commercial rootstock for peach and almond. However, susceptibility to wet soil and bacterial canker has limited its use primarily to areas with less annual rainfall. Genetic engineering techniques offer an attractive approach to improve effectively the current problems with this cultivar. To develop an efficient shoot regeneration system from leaf explants, 10 culture media containing Murashige and Skoog (MS) or woody plant medium (WPM) supplemented with different plant growth regulators were evaluated, and adventitious shoot regeneration occurred at frequencies ranging from 0% to 36.1%. Optimal regeneration with a frequency of 32.3% to 36.1% occurred with WPM medium containing 8.88 mM 6-benzylamino-purine (BAP) and 0.98 to 3.94 mM indole-3-butyric acid (IBA). The regenerated shoots had a high rooting ability, and 80% of the in vitro shoots tested rooted and survived after being transplanted to substrate directly. Transient transformation showed an efficient delivery of the b-glucuronidase (GUS) reporter gene (gusA) using all three Agrobacterium tumefaciens strains tested with a concentration of OD 600 0.5 to 1.0 for 4 days of cocultivation. The protocols described provide a foundation for further studies to improve shoot regeneration and stable transformation of the important peach and almond rootstock 'Hansen 536'.
The molecular mechanism underlying dormancy release and the induction of flowering remains poorly understood in woody plants. Mu-legacy is a valuable blueberry mutant, in which a transgene insertion caused increased expression of a RESPONSE REGULATOR 2-like gene (VcRR2). Mu-legacy plants, compared with nontransgenic ‘Legacy’ plants, show dwarfing, promotion of flower bud formation, and can flower under nonchilling conditions. We conducted transcriptomic comparisons in leaves, chilled and nonchilled flowering buds, and late-pink buds, and analyzed a total of 41 metabolites of six groups of hormones in leaf tissues of both Mu-legacy and ‘Legacy’ plants. These analyses uncovered that increased VcRR2 expression promotes the expression of a homolog of Arabidopsis thaliana ENT-COPALYL DIPHOSPHATE SYNTHETASE 1 (VcGA1), which induces new homeostasis of hormones, including increased gibberellin 4 (GA4) levels in Mu-legacy leaves. Consequently, increased expression of VcRR2 and VcGA1, which function in cytokinin responses and gibberellin synthesis, respectively, initiated the reduction in plant height and the enhancement of flower bud formation of the Mu-legacy plants through interactions of multiple approaches. In nonchilled flower buds, 29 differentially expressed transcripts of 17 genes of five groups of hormones were identified in transcriptome comparisons between Mu-legacy and ‘Legacy’ plants, of which 22 were chilling responsive. Thus, these analyses suggest that increased expression of VcRR2 was collectively responsible for promoting flower bud formation in highbush blueberry under nonchilling conditions. We report here for the first time the importance of VcRR2 to induce a suite of downstream hormones that promote flowering in woody plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.