Polymetallic vein-type ores are important sources of precious metal and a principal type of orebody for various base-metals. In this research, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) remote sensing data were used for mapping hydrothermal alteration zones associated with epithermal polymetallic vein-type mineralization in the Toroud–Chahshirin Magmatic Belt (TCMB), North of Iran. The TCMB is the largest known goldfield and base metals province in the central-north of Iran. Propylitic, phyllic, argillic, and advanced argillic alteration and silicification zones are typically associated with Au-Cu, Ag, and/or Pb-Zn mineralization in the TCMB. Specialized image processing techniques, namely Selective Principal Component Analysis (SPCA), Band Ratio Matrix Transformation (BRMT), Spectral Angle Mapper (SAM) and Mixture Tuned Matched Filtering (MTMF) were implemented and compared to map hydrothermal alteration minerals at the pixel and sub-pixel levels. Subtle differences between altered and non-altered rocks and hydrothermal alteration mineral assemblages were detected and mapped in the study area. The SPCA and BRMT spectral transformation algorithms discriminated the propylitic, phyllic, argillic and advanced argillic alteration and silicification zones as well as lithological units. The SAM and MTMF spectral mapping algorithms detected spectrally dominated mineral groups such as muscovite/montmorillonite/illite, hematite/jarosite, and chlorite/epidote/calcite mineral assemblages, systematically. Comprehensive fieldwork and laboratory analysis, including X-ray diffraction (XRD), petrographic study, and spectroscopy were conducted in the study area for verifying the remote sensing outputs. Results indicate several high potential zones of epithermal polymetallic vein-type mineralization in the northeastern and southwestern parts of the study area, which can be considered for future systematic exploration programs. The approach used in this research has great implications for the exploration of epithermal polymetallic vein-type mineralization in other base metals provinces in Iran and semi-arid regions around the world.
Remote sensing imagery has become an operative and applicable tool for the preparation of geological maps by reducing the costs and increasing the precision. In this study, ASTER satellite remote sensing data were used to extract lithological information of Deh-Molla sedimentary succession, which is located in the southwest of Shahrood city, Semnan Province, North Iran. A robust and effective approach named Band Ratio Matrix Transformation (BRMT) was developed to characterize and discriminate the boundary of sedimentary rock formations in Deh-Molla region. The analysis was based on the forward and continuous division of the visible-near infrared (VNIR) and the shortwave infrared (SWIR) spectral bands of ASTER with subsequent application of principal component analysis (PCA) for producing new transform datasets. The approach was implemented to ASTER spectral band ratios for mapping dominated mineral assemblages in the study area. Quartz, carbonate, and Al, Fe, Mg –OH bearing-altered minerals such as kaolinite, alunite, chlorite and mica were appropriately mapped using the BRMT approach. The results match well with geology map of the study area, fieldwork data and laboratory analysis. Accuracy assessment of the mapping result represents a reasonable kappa coefficient (0.70%) and appropriate overall accuracy (74.64%), which verified the robustness of the BRMT approach. This approach has great potential and capability for mapping sedimentary succession with diverse local–geological–physical characteristics around the world.
ABSTRACT:In this research, a fast, adaptive and user friendly segmentation methodology is developed for highly speckled SAR images. The developed region based centroidal Voronoi tessellation (R-BCVT) algorithm is a kind of polygon-based clustering approach in which the algorithm attempts to (1) split the image domain into j numbers of centroidal Voronoi polygons (2) assign each polygon a label randomly, then (3) classify the image into k cluster iteratively to satisfy optimum segmentation, and finally a k-mean clustering method refine the detected boundaries of homogeneous regions. The advantages of the novel method arise from adaptively, simplicity and rapidity as well as low sensitivity of the model to speckle noise.* Ghasem Askari -gh.askari@du.ac.ir
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.