In this paper, a method using the concept of l1-norm is proposed to find all the efficient solutions of a 0-1 Multi-Objective Linear Programming (MOLP) problem. These solutions are specified without generating all feasible solutions. Corresponding to a feasible solution of a 0-1 MOLP problem, a vector is constructed, the components of which are the values of objective functions. The method consists of a one-stage algorithm. In each iteration of this algorithm a 0-1 single objective linear programming problem is solved. We have proved that optimal solutions of this 0-1 single objective linear programming problem are efficient solutions of the 0-1 MOLP problem. Corresponding to efficient solutions which are obtained in an iteration, some constraints are added to the 0-1 single objective linear programming problem of the next iteration. Using a theorem we guarantee that the proposed algorithm generates all the efficient solutions of the 0-1 MOLP problem. Numerical results are presented for an example taken from the literature to illustrate the proposed algorithm.
This paper proposes a global cost Malmquist productivity index, new cost Malmquist productivity index, that is circular and that gives a single measure of productivity change. The index is inspired by the global Malmquist productivity index as extended to productivity measurement. Decomposition of the proposed cost Malmquist productivity index is presented. Numerical results are presented for an example taken from the literature to illustrate the proposed algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.