-The current energy and environmental cost trends of datacenters are unsustainable. It is critically important to develop datacenter-wide power and thermal management (PTM) solutions that improve the energy efficiency of the datacenters. This paper describes one such approach where a PTM engine decides on the number and placement of ON servers while simultaneously adjusting the supplied cold air temperature. The goal is to minimize the total power consumption (for both servers and air conditioning units) while meeting an upper bound on the maximum temperature seen in any server chassis in the data center. To achieve this goal, it is important to be able to predict the incoming workload in terms of requests per second (which is done by using a short-term workload forecasting technique) and to have efficient runtime policies for bringing new servers online when the workload is high or shutting them off when the workload is low. Datacenter-wide power saving is thus achieved by a combination of chassis consolidation and efficient cooling. Experimental results demonstrate the effectiveness of the proposed dynamic resource provisioning method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.