In this work, we have studied the linear complex differential equations which are used as mathematical models in many physically significant fields and applied science. The homotopy perturbation method (HPM) has been modified for solving generalized linear complex differential equations. Also, we have tested the modified HPM for the solving of different implementations which are show the efficiency and accuracy of the proposed method. The approximated solutions are agree well with analytical solutions for the tested problems.
In this work, we have studied Susceptible-Infected-Recovered (SIR) model with vital dynamics and constant population, which is used as a mathematical models in many physically significant fields of applied science. The Homotopy Perturbation Method (HPM) and Runge-Kutta method (RK) have been used for solving the SIR model with vital dynamics and constant population. The convergence of HPM has been studied. Also, we have tested the HPM on solving different implementations which are show the efficiency and accuracy of the method. The approximated solutions of HPM for the tested problems are agree well with the numerical solutions of Runge-Kutta method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.