Background: Particulate matter (PM) in outdoor air pollution was recently designated a Group I carcinogen by the International Agency for Research on Cancer (IARC). This determination was based on the evidence regarding the relationship of PM2.5 and PM10 to lung cancer risk; however, the IARC evaluation did not include a quantitative summary of the evidence.Objective: Our goal was to provide a systematic review and quantitative summary of the evidence regarding the relationship between PM and lung cancer.Methods: We conducted meta-analyses of studies examining the relationship of exposure to PM2.5 and PM10 with lung cancer incidence and mortality. In total, 18 studies met our inclusion criteria and provided the information necessary to estimate the change in lung cancer risk per 10-μg/m3 increase in exposure to PM. We used random-effects analyses to allow between-study variability to contribute to meta-estimates.Results: The meta-relative risk for lung cancer associated with PM2.5 was 1.09 (95% CI: 1.04, 1.14). The meta-relative risk of lung cancer associated with PM10 was similar, but less precise: 1.08 (95% CI: 1.00, 1.17). Estimates were robust to restriction to studies that considered potential confounders, as well as subanalyses by exposure assessment method. Analyses by smoking status showed that lung cancer risk associated with PM2.5 was greatest for former smokers [1.44 (95% CI: 1.04, 2.01)], followed by never-smokers [1.18 (95% CI: 1.00, 1.39)], and then current smokers [1.06 (95% CI: 0.97, 1.15)]. In addition, meta-estimates for adenocarcinoma associated with PM2.5 and PM10 were 1.40 (95% CI: 1.07, 1.83) and 1.29 (95% CI: 1.02, 1.63), respectively.Conclusion: The results of these analyses, and the decision of the IARC Working Group to classify PM and outdoor air pollution as carcinogenic (Group 1), further justify efforts to reduce exposures to air pollutants that can arise from many sources.Citation: Hamra GB, Guha N, Cohen A, Laden F, Raaschou-Nielsen O, Samet JM, Vineis P, Forastiere F, Saldiva P, Yorifuji T, Loomis D. 2014. Outdoor particulate matter exposure and lung cancer: a systematic review and meta-analysis. Environ Health Perspect 122:906–911; http://dx.doi.org/10.1289/ehp.1408092
Study queStionIs protracted exposure to low doses of ionising radiation associated with an increased risk of solid cancer?
Summary Background There is much uncertainty about the risks of leukaemia and lymphoma after repeated or protracted low-dose radiation exposure typical of occupational, environmental, and diagnostic medical settings. We quantified associations between protracted low-dose radiation exposures and leukaemia, lymphoma, and multiple myeloma mortality among radiation-monitored adults employed in France, the UK, and the USA. Methods We assembled a cohort of 308 297 radiation-monitored workers employed for at least 1 year by the Atomic Energy Commission, AREVA Nuclear Cycle, or the National Electricity Company in France, the Departments of Energy and Defence in the USA, and nuclear industry employers included in the National Registry for Radiation Workers in the UK. The cohort was followed up for a total of 8·22 million person-years. We ascertained deaths caused by leukaemia, lymphoma, and multiple myeloma. We used Poisson regression to quantify associations between estimated red bone marrow absorbed dose and leukaemia and lymphoma mortality. Findings Doses were accrued at very low rates (mean 1·1 mGy per year, SD 2·6). The excess relative risk of leukaemia mortality (excluding chronic lymphocytic leukaemia) was 2·96 per Gy (90% CI 1·17–5·21; lagged 2 years), most notably because of an association between radiation dose and mortality from chronic myeloid leukaemia (excess relative risk per Gy 10·45, 90% CI 4·48–19·65). Interpretation This study provides strong evidence of positive associations between protracted low-dose radiation exposure and leukaemia. Funding Centers for Disease Control and Prevention, Ministry of Health, Labour and Welfare of Japan, Institut de Radioprotection et de Sûreté Nucléaire, AREVA, Electricité de France, National Institute for Occupational Safety and Health, US Department of Energy, US Department of Health and Human Services, University of North Carolina, Public Health England.
Background: Particulate matter (PM) in outdoor air pollution was recently designated a Group I carcinogen by the International Agency for Research on Cancer (IARC). This determination was based on the evidence regarding the relationship of PM 2.5 and PM 10 to lung cancer risk; however, the IARC evaluation did not include a quantitative summary of the evidence. oBjective: Our goal was to provide a systematic review and quantitative summary of the evidence regarding the relationship between PM and lung cancer. Methods: We conducted meta-analyses of studies examining the relationship of exposure to PM 2.5 and PM 10 with lung cancer incidence and mortality. In total, 18 studies met our inclusion criteria and provided the information necessary to estimate the change in lung cancer risk per 10-μg/m 3 increase in exposure to PM. We used random-effects analyses to allow between-study variability to contribute to meta-estimates. results: The meta-relative risk for lung cancer associated with PM 2.5 was 1.09 (95% CI: 1.04, 1.14). The meta-relative risk of lung cancer associated with PM 10 was similar, but less precise: 1.08 (95% CI: 1.00, 1.17). Estimates were robust to restriction to studies that considered potential confounders, as well as subanalyses by exposure assessment method. Analyses by smoking status showed that lung cancer risk associated with PM 2.5 was greatest for former smokers [1.44 (95% CI: 1.04, 2.01)], followed by never-smokers [1.18 (95% CI: 1.00, 1.39)], and then current smokers
Background and objectiveExposure to traffic-related air pollutants is an important public health issue. Here, we present a systematic review and meta-analysis of research examining the relationship of measures of nitrogen oxides (NOx) and of various measures of traffic-related air pollution exposure with lung cancer.MethodsWe conducted random-effects meta-analyses of studies examining exposure to nitrogen dioxide (NO2) and NOx and its association with lung cancer. We identified 20 studies that met inclusion criteria and provided information necessary to estimate the change in lung cancer per 10-μg/m3 increase in exposure to measured NO2. Further, we qualitatively assessed the evidence of association between distance to roadways and traffic volume associated with lung cancer.ResultsThe meta-estimate for the change in lung cancer associated with a 10-μg/m3 increase in exposure to NO2 was 4% (95% CI: 1%, 8%). The meta-estimate for change in lung cancer associated with a 10-μg/m3 increase in NOx was similar and slightly more precise, 3% (95% CI: 1%, 5%). The NO2 meta-estimate was robust to different confounding adjustment sets as well as the exposure assessment techniques used. Trim-and-fill analyses suggest that if publication bias exists, the overall meta-estimate is biased away from the null. Forest plots for measures of traffic volume and distance to roadways largely suggest a modest increase in lung cancer risk.ConclusionWe found consistent evidence of a relationship between NO2, as a proxy for traffic-sourced air pollution exposure, with lung cancer. Studies of lung cancer related to residential proximity to roadways and NOx also suggest increased risk, which may be attributable partly to air pollution exposure. The International Agency for Research on Cancer recently classified outdoor air pollution and particulate matter as carcinogenic (Group 1). These meta-analyses support this conclusion, drawing particular attention to traffic-sourced air pollution.CitationHamra GB, Laden F, Cohen AJ, Raaschou-Nielsen O, Brauer M, Loomis D. 2015. Lung cancer and exposure to nitrogen dioxide and traffic: a systematic review and meta-analysis. Environ Health Perspect 123:1107–1112; http://dx.doi.org/10.1289/ehp.1408882
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.