We present a review of the correspondence problem and its solution methods, targeting the computer graphics audience. With this goal in mind, we focus on the correspondence of geometric shapes represented by point sets, contours or triangle meshes. This survey is motivated by recent developments in the field such as those requiring the correspondence of non-rigid or time-varying surfaces and a recent trend towards semantic shape analysis, of which shape correspondence is one of the central tasks. Establishing a meaningful shape correspondence is a difficult problem since it typically relies on an understanding of the structure of the shapes in question at both a local and global level, and sometimes also the shapes' functionality. However, despite its inherent complexity, shape correspondence is a recurrent problem and an essential component in numerous geometry processing applications. In this report, we discuss the different forms of the correspondence problem and review the main solution methods, aided by several classification criteria which can be used by the reader to objectively compare the methods. We finalize the report by discussing open problems and future perspectives.
We propose a multi-task deep convolutional neural network, trained on multi-modal data (clinical and dermoscopic images, and patient meta-data), to classify the 7-point melanoma checklist criteria and perform skin lesion diagnosis. Our neural network is trained using several multi-task loss functions, where each loss considers different combinations of the input modalities, which allows our model to be robust to missing data at inference time. Our final model classifies the 7-point checklist and skin condition diagnosis, produces multi-modal feature vectors suitable for image retrieval, and localizes clinically discriminant regions. We benchmark our approach using 1011 lesion cases, and report comprehensive results over all 7-point criteria and diagnosis. We also make our dataset (images and metadata) publicly available online at http://derm.cs.sfu.ca.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.