Kalman filter estimates the state of a dynamic system, even if the precise form of the system is unknown. The filter is very powerful in the sense that it supports estimations of past and even future states. The description of the standard Kalman filter and its algorithms with the two main steps, the prediction step and the correction step. Furthermore the extended Kalman filter is discussed, which represents the conversion of the Kalman filter to nonlinear systems. Finally these filter was tested on aircraft tracking, and sinus wave using MATLAB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.