BackgroundThe COVID-19, caused by the SARS-CoV-2 virus, proliferated worldwide, leading to a pandemic. Many governmental and non-governmental organisations and research institutes are contributing to the COVID-19 fight to control the pandemic.MotivationNumerous telehealth applications have been proposed and adopted during the pandemic to combat the spread of the disease. To this end, powerful tools such as artificial intelligence (AI)/robotic technologies, tracking, monitoring, consultation apps and other telehealth interventions have been extensively used. However, there are several issues and challenges that are currently facing this technology.ObjectiveThe purpose of this scoping review is to analyse the primary goal of these techniques; document their contribution to tackling COVID-19; identify and categorise their main challenges and future direction in fighting against the COVID-19 or future pandemic outbreaks.MethodsFour digital libraries (ACM, IEEE, Scopus and Google Scholar) were searched to identify relevant sources. Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) was used as a guideline procedure to develop a comprehensive scoping review. General telehealth features were extracted from the studies reviewed and analysed in the context of the intervention type, technology used, contributions, challenges, issues and limitations.ResultsA collection of 27 studies were analysed. The reported telehealth interventions were classified into two main categories: AI-based and non-AI-based interventions; their main contributions to tackling COVID-19 are in the aspects of disease detection and diagnosis, pathogenesis and virology, vaccine and drug development, transmission and epidemic predictions, online patient consultation, tracing, and observation; 28 telehealth intervention challenges/issues have been reported and categorised into technical (14), non-technical (10), and privacy, and policy issues (4). The most critical technical challenges are: network issues, system reliability issues, performance, accuracy and compatibility issues. Moreover, the most critical non-technical issues are: the skills required, hardware/software cost, inability to entirely replace physical treatment and people’s uncertainty about using the technology. Stringent laws/regulations, ethical issues are some of the policy and privacy issues affecting the development of the telehealth interventions reported in the literature.ConclusionThis study provides medical and scientific scholars with a comprehensive overview of telehealth technologies’ current and future applications in the fight against COVID-19 to motivate researchers to continue to maximise the benefits of these techniques in the fight against pandemics. Lastly, we recommend that the identified challenges, privacy, and security issues and solutions be considered when designing and developing future telehealth applications.
BACKGROUND Multiple Sclerosis (MS) is an autoimmune disease that results from the demyelination of the nerves in the Central Nervous System. The diagnosis depends on clinical history, neurological examination, and radiological images. Artificial Intelligence proved to be an effective tool in enhancing the diagnostic tools of MS. OBJECTIVE To explore how AI assisted in diagnosis and predicting the progression of MS. METHODS We used three bibliographic databases in our search: PubMed IEEE Xplore and Cochrane in our search. The study selection process included: removal of duplicated articles, screening titles and abstracts, and reading the full text. This process was performed by two reviewers. The data extracted from the included studies have been filled in an Excel sheet. This step had been done by each reviewer accordingly to the assigned articles. The extracted data sheet was checked by two reviewers to have accuracy ensured. The narrative approach is applied in data synthesis. RESULTS The search conducted resulted in 320 articles Removing duplicates and excluding the ineligible articles due to irrelevancy to the population, intervention, and outcomes resulted in excluding 299 articles. Thus, our review will include 21 articles for data extraction and data synthesis. CONCLUSIONS Artificial Intelligence is becoming a trend in the medical field. Its contribution in enhancing the diagnostic tools of many diseases, as in MS, is prominent and can be built on in further development plans. However, the implementation of Artificial Intelligence in Multiple Sclerosis is not widespread to confirm the benefits gained, and the datasets involved in the current practice are relatively small. It is recommended to have more studies that focus on the relationship between the employment of AI in diagnosis and monitoring progression and the accuracy gained by this employment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.