Objective: Energy is one of the most significant inputs for development and economic growth. Jordan faces big internal and regional challenges concerns. One of these challenges is the growing Electricity demand, which accompanied by a shortage of available natural resources. Locally, Jordan is generating very limited Electrical energy that contributes only 2.4% of total energy consumption. Therefore, providing reliable and affordable Electricity in Jordan is considered one of the National Energy Strategy. The off-grid energy generating technologies can provide a more reliable supply and has a great potential to supply power to remote and rural areas. It is more environmentally friendly, cost-efficient, and operates independently without relying on multiple public utilities. The purpose of this research is to study gasification technology as one of a renewable energy source that can provide a more reliable supply and has a great potential to supply power to remote and rural areas. The gasification of the carbonaceous material is a method to produce syngas. Such technology is a process used to converts carbonaceous materials to synthetic gas to use as energy. In the gasification process, the most common materials used are Biomass. This technology has many challenges, such as low energy density, low heating value, higher tar content, and unstable supply. To overcome these disadvantages, Biomass and coal have been employed in a single process called the co-gasification. Although this method improved the process of co-gasification various factors influenced such a process. These factors include flow geometry, where the gasifier is classified for several types: entrained flow gasifier, moving bed gasifier, and fluidized bed gasifier. Other factors are gasification agent, operation conditions (temperature, pressure), heating rate, feedstock composition, fuel blending ratio, and particle size, where it is influenced by the percentage of the gases and ratio between produced (CO, CO2, CH4, H2). Methods: Previous works and research. of the gases and ratio between produced (CO, CO2, CH4, H2). Results: Compared the production of synthesis gas by co-gasification process. of the gases and ratio between produced (CO, CO2, CH4, H2). Conclusion: This paper presented the co-gasification process from the literature. Then, the comparison was made between the co-gasification process and normal gasification to determine the main factors that impact these processes, which will attend to future improving gasification. The gasification agents is one of factors that influence the gasification process, which depends on the gasifier design and operation. The other factor that can affect the co-gasification is temperature.
One of the most important things to consider when choosing the type of solar cells when purchasing is efficiency, which is the most important thing that distinguishes a solar cell from another. The efficiency of the solar cell is influenced by weather factors such as wind speed, dust, relative humidity, and heat; the aim of this paper is to study the effect of solar cell temperature on its performance, using one-diode equivalent circuit model. This paper analyzed the relation between solar cell operating temperature with the slope of I-V characteristics curve, slope of P-V characteristics curve at each point as well as the PV module efficiency. Temperature changes have an impact on the slope of I-V and P-V characteristic curves, and an increase of 0.086 percent in temperature reduces the PV module's efficiency.
The objects of the study are solar modules. The world has witnessed a change in all aspects of life, especially in the last period, when the world witnessed an increase in the demand for energy and all regions. Here the imperfection appeared in meeting the energy needs, just as the traditional sources (oil, coal, and natural gas), for example, are no longer hope as they are non-renewable sources. In addition to these sources, to exploit the energy in them, we must burn, which pollutes the environment, in addition to the cost of transportation. Not long ago, solar energy began to produce electricity through photovoltaic modules, and competition began to make photovoltaic modules with higher efficiency. The main aim of this study is to clarify the concept of bifacial photovoltaic modules and show some differences between them and monofacial photovoltaic modules. The current report consists of the definition of bifacial photovoltaic modules and their most important specifications, comparing them with monofacial photovoltaic modules, which are the best, the factors affecting their energy production, and the type of radiation used in each type. In fact, the utilization of albedo radiation for monofacial photovoltaic modules does not exceed 2 %, while this percentage is exceeded in bifacial photovoltaic modules. So, it can be recommended here that the trend to use bifacial photovoltaic modules can be economical and space-saving space because it produces more amount of electricity for the same unit area, which in turn this spaces it available for other applications, and also, increase the amount of electricity due to the increase in the effective side size (two sides: one upwards and the other is downward) of the solar modules.
The wind energy sector is rapidly growing and has become one of the most important sources of renewable power production. New technologies are being developed to increase energy production. This study focuses on developing and evaluating a 3-D printed micro-wind turbine system for residential electricity production. The effectiveness of using Poly Lactic Acid material for model production was assessed using the SolidWorks environment. Then, three–dimensional CFD model was developed to simulate a micro-wind turbine. The CFD model was validated in good agreement against scale physical model experiments performed in a wind tunnel. The results demonstrated that the 5-blade micro-wind turbine design was the most effective under the tested conditions, with a low cut-in speed and the ability to operate under torque up to 70 N.m. Finally, the currently available manufacturing processes for micro-wind turbines have been evaluated. Future work should evaluate the performance of the MWT system under realistic conditions in a site test to determine energy production and total efficiency
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.