In this paper, based on previous results on AND-OR parallel dynamical systems over directed graphs, we give a more general pattern of local functions that also provides fixed point systems. Moreover, by considering independent sets, this pattern is also generalized to get systems in which periodic orbits are only fixed points or 2-periodic orbits. The results obtained are also applicable to homogeneous systems. On the other hand, we study the periodic structure of parallel dynamical systems given by the composition of two parallel systems, which are conjugate under an invertible map in which the inverse is equal to the original map. This allows us to prove that the composition of any parallel system on a maxterm (or minterm) Boolean function and its conjugate one by means of the complement map is a fixed point system, when the associated graph is undirected. However, when the associated graph is directed, we demonstrate that the corresponding composition may have points of any period, even if we restrict ourselves to the simplest maxterm OR and the simplest minterm AND. In spite of this general situation, we prove that, when the associated digraph is acyclic, the composition of OR and AND is a fixed point system.
Let F:0,1n⟶0,1n be a parallel dynamical system over an undirected graph with a Boolean maxterm or minterm function as a global evolution operator. It is well known that every periodic point has at most two periods. Actually, periodic points of different periods cannot coexist, and a fixed point theorem is also known. In addition, an upper bound for the number of periodic points of F has been given. In this paper, we complete the study, solving the minimum number of periodic points’ problem for this kind of dynamical systems which has been usually considered from the point of view of complexity. In order to do this, we use methods based on the notions of minimal dominating sets and maximal independent sets in graphs, respectively. More specifically, we find a lower bound for the number of fixed points and a lower bound for the number of 2-periodic points of F. In addition, we provide a formula that allows us to calculate the exact number of fixed points. Furthermore, we provide some conditions under which these lower bounds are attained, thus generalizing the fixed-point theorem and the 2-period theorem for these systems.
For two given finite lattices $L$ and $M$, we introduce the ideal of lattice homomorphism $J(L,M)$, whose minimal monomial generators correspond to lattice homomorphisms $\phi : L\to M$. We show that $L$ is a distributive lattice if and only if the equidimensinal part of $J(L,M)$ is the same as the equidimensional part of the ideal of poset homomorphisms $I(L,M)$. Next, we study the minimal primary decomposition of $J(L,M)$ when $L$ is a distributive lattice and $M=[2]$. We present some methods to check if a monomial prime ideal belongs to $\mathrm{ass}(J(L,[2]))$, and we give an upper bound in terms of combinatorial properties of $L$ for the height of the minimal primes. We also show that if each minimal prime ideal of $J(L,[2])$ has height at most three, then $L$ is a planar lattice and $\mathrm{width}(L)\leq 2$. Finally, we compute the minimal primary decomposition when $L=[m]\times [n]$ and $M=[2]$.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.