This paper presents a sequence transcription approach for the automatic diacritization of Arabic text. A recurrent neural network is trained to transcribe undiacritized Arabic text with fully diacritized sentences. We use a deep bidirectional long short-term memory network that builds high-level linguistic abstractions of text and exploits longrange context in both input directions. This approach differs from previous approaches in that no lexical, morphological, or syntactical analysis is performed on the data before being processed by the net. Nonetheless, when the network is postprocessed with our error correction techniques, it achieves state-of-the-art performance, yielding an average diacritic and word error rates of 2.09 and 5.82 %, respectively, on samples from 11 books. For the LDC ATB3 benchmark, this approach reduces the diacritic error rate by 25 %, the word error rate by 20 %, and the last-letter diacritization error rate by 33 % over the best published results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.