Air pollution, bulk precipitation, throughfall, soil condition, foliar nutrients, as well as forest health and growth were studied in 2006-2009 in a long-term ecological research (LTER) network in the Bucegi Mountains, Romania. Ozone (O(3)) was high indicating a potential for phytotoxicity. Ammonia (NH(3)) concentrations rose to levels that could contribute to deposition of nutritional nitrogen (N) and could affect biodiversity changes. Higher that 50% contribution of acidic rain (pH < 5.5) contributed to increased acidity of forest soils. Foliar N concentrations for Norway spruce (Picea abies), Silver fir (Abies alba), Scots pine (Pinus sylvestris), and European beech (Fagus sylvatica) were normal, phosphorus (P) was high, while those of potassium (K), magnesium (Mg), and especially of manganese (Mn) were significantly below the typical European or Carpathian region levels. The observed nutritional imbalance could have negative effects on forest trees. Health of forests was moderately affected, with damaged trees (crown defoliation >25%) higher than 30%. The observed crown damage was accompanied by the annual volume losses for the entire research forest area up to 25.4%. High diversity and evenness specific to the stand type's structures and local climate conditions were observed within the herbaceous layer, indicating that biodiversity of the vascular plant communities was not compromised.
Understanding soil moisture and its relationship with different climatic and soil characteristics is essential for better analysing the interactions between forest and soil water dynamics, allowing us to more precisely predict climatic changes. The present paper investigates the temporal variability of soil moisture in three different forest ecosystems (LTER -long term ecological research site) with the same soil type (Eutric Cambisol). Soil moisture was measured daily from 2011 to 2016 by using three sensors at three different depths (20, 40, 70 cm). We identified the interactions between soil properties, vegetation type, local climatic conditions and soil moisture. In order to establish the temporal variability of the soil moisture content, we have applied two procedures, namely the Fourier series and the neural network fitting. A high variability in time and depth for soil volumetric water content was identified. The highest soil moisture levels were recorded at higher depths (70 cm) for almost all surfaces, with the exception of the Fundata surface because of the occurrence of limestone. In the mountainous areas, with higher precipitation (Fundata and Predeal sites), volumetric soil water content was mainly influenced by soil physical characteristics. Soil moisture levels below the drought level were only recorded for the Stalpeni site from September to October 2012. There was a delay between the precipitation event and soil humidification of 0.4-0.8 time units (days). We also found a significant correlation between soil moisture and soil texture and a weak correlation with vegetation type. Temperature influenced soil moisture levels at almost all depths, while precipitation only had an impact when there was a delay of 1 or 2 days. Our results can serve as a scientific base in the monitoring and analysing of soil moisture against the background of a changing climate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.