Abstract:The process of regeneration of abandoned areas or deteriorated structures in the cities of Romania has become a strategy of urban-integrated development. Conversions and/or regeneration of facilities in the form of assets, with different destinations, are part of the new trend of urban regeneration and a strategy used to attract investment capital. The disappearance of mining industry sites in Maramures County, Romania, has allowed the expansion and planning of new spaces for public use and/or semipublic, and most cities have opened new development perspectives. The study is based on empirical research conducted on the brownfields of Baia-Mare City. This research investigates how stakeholders of an urban regeneration project can be more actively involved in the decision-making processes with regard to the strategic elements of the renewal project of Cuprom, as a former mining industry area. This research contributes to the development of the investigation of new types of knowledge of stakeholder analysis and improves the available practices for stakeholder salience. Social networks created and consolidated by stakeholders of an urban regeneration project are the object of analysis, evaluation, and monitoring of the equilibrium between project management and grant of resources and capital. This paper studies the salience of stakeholders of the SEPA-CUPROM project from Baia-Mare using the social networking approach. Visualization by graphical methods of social networking analysis is a useful instrument in the decision-making process of brownfield projects as part of sustainable strategies in Romania.
Currently in Transylvania there are over 600 castles, considered monuments belonging to the world or national heritage. Some of them have disappeared, some are in an advanced degradation, the vast majority being in different stages of degradation, but recoverable, through very expensive investments. The first condition for them to start a program of recovery and put them again in the tourist and cultural circuit is to know exactly the state in which they are, to evaluate the costs. The development of geomatics technologies now allows for the high fidelity assessment of this aspect. These included Global Navigation Satellite System (GNSS) - Total Stations + Levels precision, terrestrial and aerial photogrammetry, laser scanners with fixed stations, for each presenting technical data and products analyzed sequentially and corroborated-complementary. The purpose of the entire action was to establish a Workflow as dedicated as possible to the requests of the specialists involved in such projects, architects, builders, restorers, historians, cultural people, etc. The paper can highlight a model of good practices in this field, the researches continuing, by consulting the beneficiaries of products from the range offered through these activities.
The paper presents an application of the methodology used in the paper “Synthetic analysis of geoinformatics technologies for cultural heritage conservation, methodological approach”. The creation of the 3D model of the Rákóczi-Bánffy Castle in Urmeniș, Bistrița Năsăud County, was done by applying and integrating Terrestrial Laser Scanning (TLS) technologies and aerial photogrammetry performed with an Unmanned Aerial Vehicle (UAV). Agisoft Photoscan was used to compare the results and then they were compared with the images scanned using CloudCompare software. Thus, following the performance, with the help of the mentioned software, of a series of processing of the point cloud obtained, through the two imaging technologies, the error between the points belonging to the point cloud taken with UAV and the one taken with Laser Scanner was between 1 and 15 mm, the margin of error being acceptable for monuments without complex architectural details, so that the point cloud resulting from UAVs can be used successfully in this activity. The aim of the paper is to elaborate a geomatic methodology with an optimized cost-quality ratio, later replicable in the analysis of the current state of other constructions of the same type, knowing that over 600 castles in Transylvania alone are in a similar state, and such cases can be found in other Central European states as well.
ABSTRACT:We have seen in the previous paper that in the case of resistance elements made of steel, at least in this case study, the structure's response to strains, in this case sunshine, is uncertain, may or may not be linear. The analysis continues for the four characteristic months of 2013, respectively the second month (February), the fifth (May), the eighth (August) and the event (November), covering the four seasons and approximately the entire range of temperatures to which the resistance elements of the bridge are subject to along a calendar year -case study Incheon Grand Bridge, Seoul, South Korea. The number of data pairs recorded, as we have noted, every 15 minutes, is initially 11,616, being difficult to process. Some software (e.g. Table Curve 2D) can work with a maximum of 3000 data pairs. In what follows we will examine the behaviour of a reinforced concrete element of the North Bridge Gap front line and we will build a mathematical model of its behaviour to sunshine, from the input data, one recording every hours, thus reducing the number of measurements to 2904. The aim is to obtain a mathematical model with a correlation coefficient above 0.9, which is also verified and validated. This model will allow us to calculate the expected position of the sensor mounted on the resistance element for a certain temperature, the degree of confidence of the result, the interval of residual values. Because the history of the evolution of temperatures for each moment analyzed is different it produces different results, but ones that fit the specified regressive mathematical model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.