High-resolution esophageal manometry is used for the study of esophageal motility disorders, with the help of catheters with up to 36 sensors. Color pressure topography plots are generated and analyzed and using the Chicago algorithm a final diagnosis is established. One of the main parameters in this algorithm is integrated relaxation pressure (IRP). The procedure is time consuming. Our aim was to firstly develop a machine learning based solution to detect probe positioning failure and to create a classifier to automatically determine whether the IRP is in the normal range or higher than the cut-off, based solely on the raw images. The first step was the preprocessing of the images, by finding the region of interest—the exact moment of swallowing. Afterwards, the images were resized and rescaled, so they could be used as input for deep learning models. We used the InceptionV3 deep learning model to classify the images as correct or failure in catheter positioning and to determine the exact class of the IRP. The accuracy of the trained convolutional neural networks was above 90% for both problems. This work is just the first step in fully automating the Chicago Classification, reducing human intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.