The design, synthesis, structure, and in vitro anticancer and antimycobacterial activity of new hybrid imidazole (benzimidazole)/pyridine (quinoline) derivatives are described. The strategy adopted for synthesis is straight and efficient, involving a three-step setup procedure: N-acylation, N-alkylation, and quaternization of nitrogen heterocycle. The solubility in microbiological medium and anticancer and antimycobacterial activity of a selection of new synthesized compounds were evaluated. The hybrid derivatives have an excellent solubility in microbiological medium, which make them promising from the pharmacological properties point of view. One of the hybrid compounds, 9 (with a benzimidazole and 8-aminoquinoline skeleton), exhibits a very good and selective antitumor activity against Renal Cancer A498 and Breast Cancer MDA-MB-468. Moreover, the anticancer assay suggests that the hybrid Imz (Bimz)/2-AP (8-AQ) compounds present a specific affinity to Renal Cancer A498. Concerning the antimycobacterial activity, only the hybrid compound, 9, has a significant activity. SAR correlations have been performed.
Aim: Over the last decades, few significant achievements have been made in tuberculosis (TB) therapy. As a result, there is an urgent need for new anti-TB drugs. Results: Two new classes of bis-(imidazole/benzimidazole)-pyridine derivatives were designed, synthesized and evaluated for their antimycobacterial activity. Conclusion: The synthesis is efficient and straightforward, involving only two successive N-alkylations. The anti-TB assay reveal that our compounds have an excellent anti-TB activity against both replicating and nonreplicating Mtb, are not cytotoxic, exhibited a very good intracellular activity and are active against drug-resistant Mtb strains, some compounds have a bactericidal mechanism. The absorption, distribution, metabolism, excretion and toxicity studies performed for one compound are promising, indicating that it is a good candidate for a future drug.
In this study a straightforward and efficient approach concerning synthesis of 1,3-diazole derivatives under ultrasound (US) irradiation as well as under conventional thermal heating (TH) is presented. N-alkylation under US irradiation may be considered environmentally friendly in terms of higher yields, smaller amounts of solvent used and an overall energy efficiency due to a substantial reduction of reaction times. A comparative study of ultrasound vs. conventional conditions has been performed. Overall, the use of US proved to be more efficient than TH. A possible explanation concerning the different behavior of imidazole and benzimidazole in the N1-alkylation reactions under US irradiation was proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.