BackgroundThe study of microbiomes using whole-metagenome shotgun sequencing enables the analysis of uncultivated microbial populations that may have important roles in their environments. Extracting individual draft genomes (bins) facilitates metagenomic analysis at the single genome level. Software and pipelines for such analysis have become diverse and sophisticated, resulting in a significant burden for biologists to access and use them. Furthermore, while bin extraction algorithms are rapidly improving, there is still a lack of tools for their evaluation and visualization.ResultsTo address these challenges, we present metaWRAP, a modular pipeline software for shotgun metagenomic data analysis. MetaWRAP deploys state-of-the-art software to handle metagenomic data processing starting from raw sequencing reads and ending in metagenomic bins and their analysis. MetaWRAP is flexible enough to give investigators control over the analysis, while still being easy-to-install and easy-to-use. It includes hybrid algorithms that leverage the strengths of a variety of software to extract and refine high-quality bins from metagenomic data through bin consolidation and reassembly. MetaWRAP’s hybrid bin extraction algorithm outperforms individual binning approaches and other bin consolidation programs in both synthetic and real data sets. Finally, metaWRAP comes with numerous modules for the analysis of metagenomic bins, including taxonomy assignment, abundance estimation, functional annotation, and visualization.ConclusionsMetaWRAP is an easy-to-use modular pipeline that automates the core tasks in metagenomic analysis, while contributing significant improvements to the extraction and interpretation of high-quality metagenomic bins. The bin refinement and reassembly modules of metaWRAP consistently outperform other binning approaches. Each module of metaWRAP is also a standalone component, making it a flexible and versatile tool for tackling metagenomic shotgun sequencing data. MetaWRAP is open-source software available at https://github.com/bxlab/metaWRAP.Electronic supplementary materialThe online version of this article (10.1186/s40168-018-0541-1) contains supplementary material, which is available to authorized users.
Evaluating metagenomic software is key for optimizing metagenome interpretation and focus of the Initiative for the Critical Assessment of Metagenome Interpretation (CAMI). The CAMI II challenge engaged the community to assess methods on realistic and complex datasets with long- and short-read sequences, created computationally from around 1,700 new and known genomes, as well as 600 new plasmids and viruses. Here we analyze 5,002 results by 76 program versions. Substantial improvements were seen in assembly, some due to long-read data. Related strains still were challenging for assembly and genome recovery through binning, as was assembly quality for the latter. Profilers markedly matured, with taxon profilers and binners excelling at higher bacterial ranks, but underperforming for viruses and Archaea. Clinical pathogen detection results revealed a need to improve reproducibility. Runtime and memory usage analyses identified efficient programs, including top performers with other metrics. The results identify challenges and guide researchers in selecting methods for analyses.
Background:The study of microbiomes using whole-metagenome shotgun sequencing enables the analysis of uncultivated microbial populations that may have important roles in their environments. Extracting individual draft genomes (bins) facilitates metagenomic analysis at the single genome level. Software and pipelines for such analysis have become diverse and sophisticated, resulting in a significant burden for biologists to access and use them. Furthermore, while bin extraction algorithms are rapidly improving, there is still a lack of tools for their evaluation and visualization. Results:To address these challenges, we present metaWRAP, a modular pipeline software for shotgun metagenomic data analysis. MetaWRAP deploys state-of-the-art software to handle metagenomic data processing starting from raw sequencing reads and ending in metagenomic bins and their analysis. MetaWRAP is flexible enough to give investigators control over the analysis, while still being easy-to-install and easy-to-use. It includes hybrid algorithms that leverage the strengths of a variety of software to extract and refine high-quality bins from metagenomic data through bin consolidation and reassembly. MetaWRAP's hybrid bin extraction algorithm outperforms individual binning approaches and other bin consolidation programs in both synthetic and real datasets. Finally, metaWRAP comes with numerous modules for the analysis of metagenomic bins, including taxonomy assignment, abundance estimation, functional annotation, and visualization. Conclusions:MetaWRAP is an easy-to-use modular pipeline that automates the core tasks in metagenomic analysis, while contributing significant improvements to the extraction and interpretation of high-quality metagenomic bins. The bin refinement and reassembly modules of metaWRAP consistently outperform other binning approaches. Each module of metaWRAP is also a standalone component, making it a flexible and versatile tool for tackling metagenomic shotgun sequencing data. MetaWRAP is open-source software available at https://github.com/ bxlab/metaWRAP.
This publication is made publicly available in the institutional repository of Wageningen University and Research, under the terms of article 25fa of the Dutch Copyright Act, also known as the Amendment Taverne. This has been done with explicit consent by the author.Article 25fa states that the author of a short scientific work funded either wholly or partially by Dutch public funds is entitled to make that work publicly available for no consideration following a reasonable period of time after the work was first published, provided that clear reference is made to the source of the first publication of the work.This publication is distributed under The Association of Universities in the Netherlands (VSNU) 'Article 25fa implementation' project. In this project research outputs of researchers employed by Dutch Universities that comply with the legal requirements of Article 25fa of the Dutch Copyright Act are distributed online and free of cost or other barriers in institutional repositories. Research outputs are distributed six months after their first online publication in the original published version and with proper attribution to the source of the original publication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.