The application and benefits of Semantic Web Technologies (SWT) for managing, sharing, and (re‐)using of research data are demonstrated in implementations in the field of Materials Science and Engineering (MSE). However, a compilation and classification are needed to fully recognize the scattered published works with its unique added values. Here, the primary use of SWT at the interface with MSE is identified using specifically created categories. This overview highlights promising opportunities for the application of SWT to MSE, such as enhancing the quality of experimental processes, enriching data with contextual information in knowledge graphs, or using ontologies to perform specific queries on semantically structured data. While interdisciplinary work between the two fields is still in its early stages, a great need is identified to facilitate access for nonexperts and develop and provide user‐friendly tools and workflows. The full potential of SWT can best be achieved in the long term by the broad acceptance and active participation of the MSE community. In perspective, these technological solutions will advance the field of MSE by making data FAIR. Data‐driven approaches will benefit from these data structures and their connections to catalyze knowledge generation in MSE.
Named Entity Recognition (NER) is the fundamental subtask of information extraction systems that labels elements into categories such as persons, organizations or locations. The task of NER is to detect and classify words that are parts of sentences. This paper describes a statistical approach to modeling NER in Dari language. Dari and Pashto are low resources languages, spoken as official languages in Afghanistan. Unlike other languages, named entity detection approaches differ in Dari. Since in Dari language there is no capitalization for identifying named entities. We seek to bridge the gap between Dari linguistic structure and supervised learning model that predict the sequences of words paired with a sequence of tags as outputs. Dari corpus was developed from the collection of news, reports and articles based on the original orthographic structure of the Dari language. The experimental result of named entity recognition performance presents 94% accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.