BackgroundSpinocerebellar ataxia type 8 (SCA8) involves the expression of an expanded CTG/CAG combined repeats (CR) from opposite strands producing CUG expansion transcripts (ataxin 8 opposite strand, ATXN8OS) and a polyglutamine expansion protein (ataxin 8, ATXN8). The pathogenesis of SCA8 is complex and the spectrum of clinical presentations is broad.ResultsUsing stably induced cell models expressing 0, 23, 88 and 157 CR, we study the role of ATXN8OS transcripts in SCA8 pathogenesis. In the absence of doxycycline, the stable ATXN8OS CR cell lines exhibit low levels of ATXN8OS expression and a repeat length-related increase in staurosporine sensitivity and in the number of annexin positive cells. A repeat length-dependent repression of ATXN8OS expression was also notable. Addition of doxycycline leads to 25~50 times more ATXN8OS RNA expression with a repeat length-dependent increase in fold of ATXN8OS RNA induction. ChIP-PCR assay using anti-dimethyl-histone H3-K9 and anti-acetyl-histone H3-K14 antibodies revealed increased H3-K9 dimethylation and reduced H3-K14 acetylation around the ATXN8OS cDNA gene in 157 CR line. The repeat length-dependent increase in induction fold is probably due to the increased RNA stability as demonstrated by monitoring ATXN8OS RNA decay in cells treated with the transcriptional inhibitor, actinomycin D. In cells stably expressing ATXN8OS, RNA FISH experiments further revealed ribonuclear foci formation in cells carrying expanded 88 and 157 CR.ConclusionThe present study demonstrates that the expanded CUG-repeat tracts are toxic to human cells and may affect ATXN8OS RNA expression and stability through epigenetic and post-transcriptional mechanisms.
Spinocerebellar ataxia type 8 (SCA8) involves bidirectional expression of CUG (ATXN8OS) and CAG (ATXN8) expansion transcripts. The pathogenesis of SCA8 is complex and the spectrum of clinical presentations is broad. In the present study, we assessed the SCA8 repeat size ranges in Taiwanese Parkinson's disease, Alzheimer's disease and atypical parkinsonism and investigated the genetic variation modulating ATXN8 expression. Thirteen large SCA8 alleles and a novel ATXN8 -62 G/A promoter SNP were found. There is a significant difference in the proportion of the individuals carrying SCA8 larger alleles in atypical parkinsonism (P = 0.044) as compared to that in the control subjects. In lymphoblastoid cells carrying SCA8 large alleles, treatment of MG-132 or staurosporine significantly increases the cell death or caspase 3 activity. Although expressed at low steady-state, ATXN8 expression level is significantly higher (P = 0.012) in cells with SCA8 large alleles than that of the control cells. The ATXN8 transcriptional activity was significantly higher in the luciferase reporter construct containing the -62G allele than that containing the -62A allele in both neuroblastoma and embryonic kidney cells. Therefore, our preliminary results suggest that ATXN8 gene -62 G/A polymorphism may be functional in modulating ATXN8 expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.