The typical time-dependent decrease of the iron corrosion rate is often difficult to consider while designing Fe0-based remediation systems. One of the most promising approaches is the amendment with manganese dioxide (Fe0/MnO2 system). The resulting system is a very complex one where characterization is challenging. The present communication uses methylene blue discoloration (MB method) to characterize the Fe0/MnO2 system. Shaken batch experiments (75 rpm) for 7 days were used. The initial MB concentration was 10 mg L−1 with the following mass loading: [MnO2] = 2.3 g L−1, [sand] = 45 g L−1, and 0 < [Fe0] (g L−1) ≤ 45. The following systems where investigated: Fe0, MnO2, sand, Fe0/MnO2, Fe0/sand, and Fe0/MnO2/sand. Results demonstrated that MB discoloration is influenced by the diffusive transport of MB from the solution to the aggregates at the bottom of the test-tubes. Results confirm the complexity of the Fe0/MnO2/sand system, while establishing that both MnO2 and sand improve the efficiency of Fe0/H2O systems in the long-term. The mechanisms of water decontamination by amending Fe0-based systems with MnO2 is demonstrated by the MB method.
Metallic iron (Fe0) has shown outstanding performances for water decontamination and its efficiency has been improved by the presence of sand (Fe0/sand) and manganese oxide (Fe0/MnOx). In this study, a ternary Fe0/MnOx/sand system is characterized for its discoloration efficiency of methylene blue (MB) in quiescent batch studies for 7, 18, 25 and 47 days. The objective was to understand the fundamental mechanisms of water treatment in Fe0/H2O systems using MB as an operational tracer of reactivity. The premise was that, in the short term, both MnO2 and sand delay MB discoloration by avoiding the availability of free iron corrosion products (FeCPs). Results clearly demonstrate no monotonous increase in MB discoloration with increasing contact time. As a rule, the extent of MB discoloration is influenced by the diffusive transport of MB from the solution to the aggregates at the bottom of the vessels (test-tubes). The presence of MnOx and sand enabled the long-term generation of iron hydroxides for MB discoloration by adsorption and co-precipitation. Results clearly reveal the complexity of the Fe0/MnOx/sand system, while establishing that both MnOx and sand improve the efficiency of Fe0/H2O systems in the long-term. This study establishes the mechanisms of the promotion of water decontamination by amending Fe0-based systems with reactive MnOx.
The role of manganese dioxide (MnO2) in the process of water treatment using metallic iron (Fe0/H2O) was investigated in quiescent batch experiments for t ≤ 60 d. MnO2 was used as an agent to control the availability of solid iron corrosion products (FeCPs) while methylene blue (MB) was an indicator of reactivity. The investigated systems were: (1) Fe0, (2) MnO2, (3) sand, (4) Fe0/sand, (5) Fe0/MnO2, and (6) Fe0/sand/MnO2. The experiments were performed in test tubes each containing 22.0 mL of MB (10 mg L−1) and the solid aggregates. The initial pH value was 8.2. Each system was characterized for the final concentration of H+, Fe, and MB. Results show no detectable level of dissolved iron after 47 days. Final pH values varied from 7.4 to 9.8. The MB discoloration efficiency varies from 40 to 80% as the MnO2 loading increases from 2.3 to 45 g L−1. MB discoloration is only quantitative when the operational fixation capacity of MnO2 for Fe2+ was exhausted. This corresponds to the event where adsorption and co-precipitation with FeCPs is intensive. Adsorption and co-precipitation are thus the fundamental mechanisms of decontamination in Fe0/H2O systems. Hybrid Fe0/MnO2 systems are potential candidates for the design of more sustainable Fe0 filters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.