Abstract. This article addresses a number of limitations of state-of-the-art methods of Ontology Alignment: 1) they primarily address concepts and entities while relations are less well-studied; 2) many build on the assumption of the 'well-formedness' of ontologies which is unnecessarily true in the domain of Linked Open Data; 3) few have looked at schema heterogeneity from a single source, which is also a common issue particularly in very large Linked Dataset created automatically from heterogeneous resources, or integrated from multiple datasets. We propose a domain-and language-independent and completely unsupervised method to align equivalent relations across schemata based on their shared instances. We introduce a novel similarity measure able to cope with unbalanced population of schema elements, an unsupervised technique to automatically decide similarity threshold to assert equivalence for a pair of relations, and an unsupervised clustering process to discover groups of equivalent relations across different schemata. Although the method is designed for aligning relations within a single dataset, it can also be adapted for cross-dataset alignment where sameAs links between datasets have been established. Using three gold standards created based on DBpedia, we obtain encouraging results from a thorough evaluation involving four baseline similarity measures and over 15 comparative models based on variants of the proposed method. The proposed method makes significant improvement over baseline models in terms of F1 measure (mostly between 7% and 40%), and it always scores the highest precision and is also among the top performers in terms of recall. We also make public the datasets used in this work, which we believe make the largest collection of gold standards for evaluating relation alignment in the LOD context.
This paper describes the process followed in order to make some of the public meterological data from the Agencia Estatal de Meteorología (AEMET, Spanish Meteorological Office) available as Linked Data. The method followed has been already used to publish geographical, statistical, and leisure data. The data selected for publication are generated every ten minutes by the 250 automatic stations that belong to AEMET and that are deployed across Spain. These data are available as spreadsheets in the AEMET data catalog, and contain more than twenty types of measurements per station. Spreadsheets are retrieved from the website, processed with Python scripts, transformed to RDF according to an ontology network about meteorology that reuses the W3C SSN Ontology, published in a triple store and visualized in maps with Map4rdf.
Data owners are creating an ever richer set of information resources online, and these are being used for more and more applications. Spatial data on the Web is becoming ubiquitous and voluminous with the rapid growth of location-based services, spatial technologies, dynamic location-based data and services published by different organizations. However, the heterogeneity and the peculiarities of spatial data, such as the use of different coordinate reference systems, make it difficult for data users, Web applications, and services to discover, interpret and use the information in the large and distributed system that is the Web. To make spatial data more effectively available, this paper summarizes the work of the joint W3C/OGC Working Group on Spatial Data on the Web that identifies 14 best practices for publishing spatial data on the Web. The paper extends that work by presenting the identified challenges and rationale for selection of the recommended best practices, framed by the set of principles that guided the selection. It describes best practices that are employed to enable publishing, discovery and retrieving (querying) spatial data on the Web, and identifies some areas where a best practice has not yet emerged.
Many efforts have been made in the area of multimedia to bridge the socalled "semantic-gap" with the implementation of ontologies from 2001 to the present. In this paper, we provide a comparative study of the most well-known ontologies related to multimedia aspects. This comparative study has been done based on a framework proposed in this paper and called FRAMECOMMON. This framework takes into account process-oriented dimension, such as the methodological one, and outcome-oriented dimensions, like multimedia aspects, understandability, and evaluation criteria. Finally, we derive some conclusions concerning this one decade state-of-art in multimedia ontologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.