SummaryIn this study, we looked for genetic factors in the pepper (Capsicum annuum) germplasm that control the number of potato virus Y (PVY) particles entering the plant (i.e. effective population size at inoculation) and the PVY accumulation at the systemic level (i.e. census population size). Using genotyping‐by‐sequencing (GBS) in a core collection of 256 pepper accessions, we obtained 10 307 single nucleotide polymorphisms (SNPs) covering the whole genome. Genome‐wide association studies (GWAS) detected seven SNPs significantly associated with the virus population size at inoculation and/or systemic level on chromosomes 4, 6, 9 and 12. Two SNPs on chromosome 4 associated with both PVY population sizes map closely to the major resistance gene pvr2 encoding the eukaryotic initiation factor 4E. No obvious candidates for resistance were identified in the confidence intervals for the other chromosomes. SNPs detected on chromosomes 6 and 12 colocalized with resistance quantitative trait loci (QTLs) previously identified with a biparental population. These results show the efficiency of GBS and GWAS in C. annuum, indicate highly consistent results between GWAS and classical QTL mapping, and suggest that resistance QTLs identified with a biparental population are representative of a much larger collection of pepper accessions. Moreover, the resistance alleles at these different loci were more frequently combined than expected by chance in the core collection, indicating widespread pyramiding of resistance QTLs and widespread combination of resistance QTLs and major effect genes. Such pyramiding may increase resistance efficiency and/or durability.
Infection of plants by viruses is a complex process involving several steps: inoculation into plant cells, replication in inoculated cells and plant colonization. The success of the different steps depends, in part, on the viral effective population size (Ne), defined as the number of individuals passing their genes to the next generation. During infection, the virus population will undergo bottlenecks, leading to drastic reductions in Ne and, potentially, to the loss of the fittest variants. Therefore, it is crucial to better understand how plants affect Ne. We aimed to (i) identify the plant genetic factors controlling Ne during inoculation, (ii) understand the mechanisms used by the plant to control Ne and (iii) compare these genetic factors with the genes controlling plant resistance to viruses. Ne was measured in a doubled-haploid population of Capsicum annuum. Plants were inoculated with either a Potato virus Y (PVY) construct expressing the green fluorescent protein or a necrotic variant of Cucumber mosaic virus (CMV). Newas assessed by counting the number of primary infection foci on cotyledons for PVY or the number of necrotic local lesions on leaves for CMV. The number of foci and lesions was correlated (r=0.57) and showed a high heritability (h2=0.93 for PVY and h2=0.98 for CMV). The Ne of the two viruses was controlled by both common quantitative trait loci (QTLs) and virus-specific QTLs, indicating the contribution of general and specific mechanisms. The PVY-specific QTL colocalizes with a QTL that reduces PVY accumulation and the capacity to break down a major-effect resistance gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.