Abstract. A correct and reliable forecast of volcanic plume dispersion is vital for aviation safety. This can only be achieved by representing all responsible physical and chemical processes (sources, sinks, and interactions) in the forecast models. The representation of the sources has
been enhanced over the last decade, while the sinks and interactions have received less attention. In particular, aerosol dynamic processes and aerosol–radiation interaction are neglected so far. Here we address this gap by further developing the ICON-ART (ICOsahedral Nonhydrostatic – Aerosols and Reactive Trace gases) global modeling system to account for these processes.
We use this extended model for the simulation of volcanic aerosol dispersion after the Raikoke eruption in June 2019. Additionally, we validate the simulation results with measurements from AHI (Advanced Himawari Imager), CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization), and OMPS-LP (Ozone Mapping and Profiling Suite-Limb Profiler). Our results show that around 50 % of very fine volcanic ash mass (particles with diameter d<30 µm) is removed due to particle growth and aging. Furthermore, the maximum volcanic cloud top height rises more than 6 km over the course of 4 d after the eruption due to aerosol–radiation interaction. This is the first direct evidence that shows how cumulative effects of aerosol dynamics and aerosol–radiation interaction lead to a more precise forecast of very fine ash lifetime in volcanic clouds.
Monitoring of (surface) urban heat islands (UHI) is possible through satellite remote sensing of the land surface temperature (LST). Previous UHI studies are based on medium and high spatial resolution images, which are in the best-case scenario available about four times per day. This is not adequate for monitoring diurnal UHI development. High temporal resolution LST data (a few measurements per hour) over a whole city can be acquired by instruments onboard geostationary satellites. In northern Germany, geostationary LST data are available in pixels sized 3,300 by 6,700 m. For UHI monitoring, this resolution is too coarse, it should be comparable instead to the width of a building block: usually not more than 100 m. Thus, an LST downscaling is proposed that enhances the spatial resolution by a factor of about 2,000, which is much higher than in any previous study. The case study presented here (Hamburg, Germany) yields promising results. The latter, available every 15 min in 100 m spatial resolution, showed a high explained variance (R 2 : 0.71) and a relatively low root mean square error (RMSE: 2.2 K). For lower resolutions the downscaling scheme performs even better (R 2 : 0.80, RMSE: 1.8 K for 500 m; R 2 : 0.82, RMSE: 1.6 K for 1,000 m).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.