We have demonstrated an optically pumped polymer microring laser fabricated by two photon polymerization (TPP) of SU-8. The gain medium is an organic dye (Rhodamine B) doped in SU-8, and the laser cavity is a double coupled microring structure. Single mode lasing was obtained from the two coupled rings each with 30 µm and 29 µm radii using Vernier effect. Low laser threshold of 0.4 µJ/mm(2) is achieved using 1 µm wide polymer waveguides and the quality factor is greater than 10(4) at 612.4 nm wavelength. The lasing remained stable with pump energies from threshold to energies as high as 125 times the threshold.
In this paper, a closed-loop micro-opto-electro-mechanical system (MOEMS) accelerometer based on the Fabry-Pérot (FP) interferometer is presented. The FP cavity is formed between the end of a cleaved single-mode optical fiber and the cross-section of a proof mass (PM) which is suspended by four U-shaped springs. The applied acceleration tends to move the PM in the opposite direction. The arrays of fixed and movable comb fingers produce an electrostatic force which keeps the PM in its resting position. The voltage that can provide this electrostatic force is considered as the output of the sensor. Using a closed-loop detection method it is possible to increase the measurement range without losing the resolution. The proposed sensor is fabricated on a silicon-on-insulator wafer using the bulk micromachining method. The results of the sensor characterization show that the accelerometer has a linear response in the range of ±5 g. In the closed-loop mode, the sensitivity and bias instability of the sensor are 1.16 V/g and 40 µg, respectively.
Fast direct writing of waveguides on polymers using low power continuous-wave lasers has been investigated. Using the cis-trans property of a functionalized sulfonated azo chromophores, we have fabricated graded index waveguides with low loss, which is due to graded index sidewalls. Fabrication is done by exposing the polymer film to a 532nm wavelength laser beam focused to about 5μm spot at the film. Losses were calculated to be 0.48±0.04dB∕cm at 830nm wavelength with no surface deformation. This technique enables us to fabricate integrated optical circuits including directional couplers, dividers, filters, switches, etc., as they are currently investigated in our laboratory.
We have fabricated in-plane slanted gratings on azo-functionalized polymeric films using a fast, direct-writing method. By properly adjusting the resonance, these gratings can be used as 90 degrees integrated reflectors and add/drop filters in the plane of the film. We have produced an attenuation of 14.8 dB at 1560.2 nm with a FWHM of 6.47 nm. Also, a signal of 1548 nm wavelength was added to the output from a different direction. Any light shifted from the resonance will pass through the filter undisturbed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.