Bone regeneration is an important objective in clinical practice and has been used for different applications. The aim of this study was to evaluate the effectiveness of nanocomposite tricalcium phosphate (TCP)/collagen scaffolds combined with hydroxyapatite scaffold for bone healing in surgery of femoral defects in rabbits. In this study, 45 mature male New Zealand white rabbits between 6 and 8 months old and weighting between 3 and 3.5 kg were examined. Rabbits were divided into three groups. Surgical procedures were performed after intramuscular injection of Ketamine 10% (ketamine hydrochloride, 50 mg/kg) and Rompun 5% (xylazine, 5 mg/kg). Then an approximately 6 mm diameter-5 mm cylinder bone defect was created in the femur of one of the hind limbs. After inducing the surgical wound, all rabbits were coloured and randomly divided into three experimental groups of 15 animals each. Group 1 received pure medical nanocomposite TCP/collagen granules, group 2 received hydroxyapatite, and third group was a control group which received no treatment. Histopathological evaluation was performed on days 15, 30, and 45 after surgery. On days 15, 30, and 45 after surgery, the quantity and the velocity of stages of bone formation at the healing site in nanocomposite TCP/collagen group were better than HA and control groups and the quantity of newly formed lamellar bone at the healing site in nanocomposite TCP/collagen group were better than onward compared with HA and control groups. In conclusion, it seems that TCP/collagen nanocomposite has a significant role in the reconstruction of bone defects and can be used as scaffold in bone fractures.
PURPOSE:To determine biomechanical property of autogenous bone graft covered with hydroxyapatite in the defect of radial bone in rabbit. METHODS: Eighteen adult male New Zealand white rabbits were used which were divided into three groups (I, II, III) of six rabbits each. A segmental bone defect of 10 mm in length was created in the middle of the right radial shaft under general effective anesthesia in all rabbits and were stabilized using mini-plate with four screws. The defects In group I were left as such without filler, whereas in group II the defect were filled up with harvested 10 mm rib bone and in group III the defect were packed with rib bone covered with nano-hydroxyapatite. All rabbits in three groups were divided into two subgroups (one month and three months duration with three rabbits in each one). RESULTS:The mechanical property and the mean load for fracturing normal radial bone was recorded 388.2±6 N whereas it was 72.4±12.8 N for group I in 1 month duration which was recorded 182.4±14.2 N for group II and 211.6±10.4 N for group III at the end of 1 month. These values were 97.6±10.2 N for group I and 324.6±8.2 N for group II and 372.6±17.4 N for group III at the end of three months after implantation. CONCLUSION: Implantation of autologous graft covered with hydroxyapatite indicated to have positive effect in integral formation of qualitative callus at the site of fracture and early re-organization of callus to regain mechanical strength too.
Articular cartilage has a limited capacity for self-repair. Untreated injuries of cartilage may lead to osteoarthritis. This problem demands new effective methods to reconstruct articular cartilage. Mesenchymal stem cells (MSCs) have the proclivity to differentiate along multiple lineages giving rise to new bone, cartilage, muscle, or fat. This study was an animal model for autologous effects of transplantation of MSCs with a collagen-poly(vinyl alcohol) (PVA) scaffold into full-thickness osteochondral defects of the stifle joint in the rabbit as an animal model. A group of 10 rabbits had a defect created experimentally in the full thickness of articular cartilage penetrated into the subchondral space in the both stifle joints. The defect in the right stifle was filled with MSCs/collagen-PVA scaffold (group I), and in the left stifle, the defect was left without any treatment as the control group (group II). Specimens were harvested at 12 weeks after implantation, examined histologically for morphologic features, and stained immunohistochemically for type-II collagen. Histology observation showed that the MSCs/collagen-PVA repair group had better chondrocyte morphology, continuous subchondral bone, and much thicker newly formed cartilage compared with the control group at 12 weeks post operation. There was a significant difference in histological grading score between these two groups. The present study suggested that the hybrid collagen-PVA scaffold might serve as a new way to keep the differentiation of MSCs for enhancing cartilage repair.
Acceleration of bone healing has always been a major challenge in orthopedic surgery, the aim of this study was an evaluation of the biological effects of zirconia-stabilized yttria on bone healing, using an in vivo model. Nano-hydroxyapatite powder with zirconia-stabilized yttria were inserted in rabbit tibia and then histologically analyzed and compared with non-treated controls so thirty six. New Zealand white male rabbits randomly divided into two groups of 18 rabbits each. A cortical hole of 4 mm diameter and 8 mm depth in each tibia was drilled. In group I, the defect was left empty, whereas in group II, the bone defect was packed with nano-hydroxyapatite/5% zirconia stabilized with yttria. Histological evaluations were performed at two, four and six weeks after the implantation. Microscopic changes on two groups along with the time course were scored and statistical analysis showed that the average scores in group II were significantly higher than the other groups (p < 0.05). Histological analysis was shown to be significantly improved by the nano-hydroxyapatite/5% zirconia stabilized with yttria compared with the control group, suggesting that this biomaterial promote the healing of cortical bone, presumably by acting as an osteoconductive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.