Hepatitis E virus (HEV) is an important public health concern in many developing countries. HEV is also endemic in some industrialized counties, including the United States. With our recent discovery of swine HEV in pigs that is genetically closely related to human HEV, hepatitis E is now considered a zoonotic disease. Human strains of HEV are genetically heterogenic. So far in the United States, only one strain of swine HEV has been identified and characterized from a pig. To determine the extent of genetic variations and the nature of swine HEV infections in U.S. pigs, we developed a universal reverse transcription-PCR (RT-PCR) assay that is capable of detecting genetically divergent strains of HEV. By using this universal RT-PCR assay, we tested fecal and serum samples of pigs of 2 to 4 months of age from 37 different U.S. swine farms for the presence of swine HEV RNA. Thirty-four of the 96 pigs (35%) and 20 of the 37 swine herds (54%) tested were positive for swine HEV RNA. The sequences of a 348-bp region within the ORF2 gene of 27 swine HEV isolates from different geographic regions were determined. Sequence analyses revealed that the 27 U.S. swine HEV isolates shared 88 to 100% nucleotide sequence identities with each other and 89 to 98% identities with the prototype U.S. strain of swine HEV. These U.S. swine HEV isolates are only distantly related to the Taiwanese strains of swine HEV, with about 74 to 78% nucleotide sequence identities; to most known human strains of HEV worldwide, with <79% sequence identities; and to avian HEV, with 54 to 56% sequence identities. Phylogenetic analysis showed that all the U.S. swine HEV isolates identified in this study clustered in the same genotype with the prototype U.S. swine HEV and the two U.S. strains of human HEV. The data from this study indicated that swine HEV is widespread and enzoonotic in U.S. swine herds and that, as is with human HEV, swine HEV isolates from different geographic regions of the world are also genetically heterogenic. These data further raise potential concerns for zoonosis, xenozoonosis, and food safety.
Hepatitis-splenomegaly (HS) syndrome is an emerging disease in chickens in North America ; the cause of this disease is unknown. In this study, the genetic identification and characterization of a novel virus related to human hepatitis E virus (HEV) isolated from bile samples of chickens with HS syndrome is reported. Based upon the similar genomic organization and significant sequence identity of this virus with HEV, the virus has been tentatively named avian HEV in order to distinguish it from human and swine HEV. Electron microscopy revealed that avian HEV is a non-
Infection of animals with a molecular viral clone is critical to study the genetic determinants of viral replication and virulence in the host. Type 2 porcine circovirus (PCV2) has been incriminated as the cause of postweaning multisystemic wasting syndrome (PMWS), an emerging disease in pigs. We report here for the first time the construction and use of an infectious molecular DNA clone of PCV2 to characterize the disease and pathologic lesions associated with PCV2 infection by direct in vivo transfection of pigs with the molecular clone. The PCV2 molecular clone was generated by ligating two copies of the complete PCV2 genome in tandem into the pBluescript SK (pSK) vector and was shown to be infectious in vitro when transfected into PK-15 cells. Forty specific-pathogen-free pigs at 4 weeks of age were randomly assigned to four groups of 10 each. Group 1 pigs served as uninoculated controls. Pigs in group 2 were each inoculated intranasally with about 1.9 ؋ 10 5 50% tissue culture infective doses of a homogeneous PCV2 live virus stock derived from the molecular clone. Pigs in group 3 were each injected intrahepatically with 200 g of the cloned PCV2 plasmid DNA, and pigs in group 4 were each injected into the superficial iliac lymph nodes with 200 g of the cloned PCV2 plasmid DNA. Animals injected with the cloned PCV2 plasmid DNA developed infection resembling that induced by intranasal inoculation with PCV2 live virus stock. Seroconversion to PCV2-specific antibody was detected in the majority of pigs from the three inoculated groups at 35 days postinoculation (DPI). Viremia, beginning at 14 DPI and lasting 2 to 4 weeks, was detected in the majority of the pigs from all three inoculated groups. There were no remarkable clinical signs of PMWS in control or any of the inoculated pigs. Gross lesions in pigs of the three inoculated groups were similar and were characterized by systemically enlarged, tan lymph nodes and lungs that failed to collapse. Histopathological lesions and PCV2-specific antigen were detected in numerous tissues and organs, including brain, lung, heart, kidney, tonsil, lymph nodes, spleen, ileum, and liver of infected pigs. This study more definitively characterizes the clinical course and pathologic lesions exclusively attributable to PCV2 infection. The data from this study indicate that the cloned PCV2 genomic DNA may replace infectious virus for future PCV2 pathogenesis and immunization studies. The data also suggest that PCV2, although essential for development of PMWS, may require other factors or agents to induce the full spectrum of clinical signs and lesions associated with advanced cases of PMWS.Porcine circovirus (PCV) was originally isolated as a cell culture contaminant of a porcine kidney cell line (PK-15) (56,60). PCV is a small, nonenveloped virus that contains a singlestranded circular DNA genome of about 1.76 kb. PCV is classified in the family of Circoviridae, which consists of three other animal circoviruses (chicken anemia virus [CAV], psittacine beak and feather disease v...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.