The main purpose of this article is to apply feed forward back propagation neural network (FNN) to predict groundwater level of Aghili plain, which is located in southwestern Iran. An optimal design is completed for the two hidden layers with four different algorithms: descent with momentum (GDM), Levenberg Marquardt (LM), resilient back propagation (RP), and scaled conjugate gradient (SCG). The training data for ANN is obtained from observation data. Rain, evaporation, relative humidity, temperature, discharge of irrigation canal, and groundwater recharge from the plain boundary were used in input layer while future groundwater level was used as output layer. Before training, the available data were divided into three groups, according to hydrogeological characteristics of different parts of the plain surrounding each piezometer. Statistical analysis in terms of Mean-Square-Error (MSE) and correlation coefficient (R) was used to investigate the prediction performance of ANN. FFN-LM algorithm has shown best result in the present study for all three hydrogeological groups. Now, to predict water level, the t time data () were used as input and output respectively. The best condition of this network was achieved for each group of data. Next, with defining the new input data related to August 2010 to January 2011 groundwater level was predicted for the following year. The achieved results of ANN model in contrast with results of finite difference model showed very high accuracy of artificial neural network in predicting groundwater level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.