Microstructural design is generally applied to improve the mechanical property of titanium alloy by introducing different phase transformations and thermomechanical treatments. Aside from the martensitic and diffusion transformation, the occurrence of massive transformation occurs in Ti alloy. Massive transformation is categorized as civilian phase transformation, which resulted in the change of crystal structure of an alloy with a given composition without changing the chemical composition of its initial phase. It happened when the body centered-cubic β phase changed into hexagonal closed-pack α phase without decomposing into α+β. Massive transformation involves a diffusion and growth mechanism in a short-range and generally occurs during the introduction of high cooling rates to restrict the full diffusion mechanism. Owing to the nature of a rapid cooling rate as a requirement for massive transformation, the massive phase is normally found together with the product of martensitic transformation. On the other hand, the product of massive transformation is observed as a blocky grain with a featureless characteristic using optical microscopy and. Phase identification using electron backscattered diffraction shows that the region of αm shows only the presence of the α phase. It was reported for containing a high dislocation density similar to martensitic transformation. Specifically, in Ti alloy, the higher magnification using scanning electron microscopy shows fine sub-lamellar morphology, which observed as a combination product morphology between martensitic and diffusion transformation. It resulted in the mechanical property of the massive phase is between those two morphologies. Hence, it brings a new perspective on designing the microstructure of Ti alloy, which can be used to improve the mechanical property of Ti alloy.
The microstructure evolution during the drawing process of Ti-6Al-4V alloy with a lamellar morphology as an initial microstructure was investigated. Microstructure analysis on specimens with a different reduction ratio supported by 2D-drawing process simulation using DEFORMTM was utilized to examine the deformed state and microstructure behavior of the alloy. Dynamic recrystallization (DRX) phenomenon on the high reduction ratio (52.7%) was achieved fine equiaxed grain. A Zenner-Holllomon calculation using temperature and strain rates was also conducted to evaluate the DRX. Furthermore, a higher drawing reduction ratio attributed to a high fraction of kinked lamellar, which DRX occurred in the shear band and the regions of broken lath or kinked.
The effect of cooling rates during a double stage solution treatment (DSST) on the volume fraction of the massive phase (αm) in Ti-6Al-4V alloy was successfully confirmed in the present study. The morphology of Ti-6Al-4V alloy depends on the cooling rates during the cooling from the β region. The αm, which has a transformation characteristic between martensite (α′) and α diffusion, is reported to be a potential method for obtaining a fine lamellar α/β by thermal decomposition. The different fraction of αm was found after DSST with the first stage was conducted above the β-transus temperature at 1050 °C, followed by second annealing at different temperatures in the α+β region. It was found that the formation of αm exists in a specific temperature region. A longer period in this region, which was calculated based on different cooling rates during DSST, will increase the fraction of αm in the specimen. All specimens after DSST contain αm with the α width of approximately 1μm and white-dot particles, which is predicted to be V-enriched precipitates. The DSST can be a potential method for producing a high fraction of αm, which can be thermally decomposed into a fine lamellar α/β, introducing a Ti-6Al-4V alloy with superior mechanical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.