Drought is one of the hostile environmental stresses that limit the yield production of crop plants by modulating their growth and development. Peanut (Arachis hypogaea) has a wide range of adaptations to arid and semi-arid climates, but its yield is prone to loss due to drought. Other than beneficial fatty acids and micronutrients, peanut harbors various bioactive compounds including flavonoids that hold a prominent position as antioxidants in plants and protect them from oxidative stress. In this study, understanding of the biosynthesis of flavonoids in peanut under water deficit conditions was developed through expression analysis and correlational analysis and determining the accumulation pattern of phenols, flavonols, and anthocyanins. Six peanut varieties (BARD479, BARI2011, BARI2000, GOLDEN, PG1102, and PG1265) having variable responses against drought stress have been selected. Higher water retention and flavonoid accumulation have been observed in BARI2011 but downregulation has been observed in the expression of genes and transcription factors (TFs) which indicated the maintenance of normal homeostasis. ANOVA revealed that the expression of flavonoid genes and TFs is highly dependent upon the genotype of peanut in a spatiotemporal manner. Correlation analysis between expression of flavonoid biosynthetic genes and TFs indicated the role of AhMYB111 and AhMYB7 as an inhibitor for AhF3H and AhFLS, respectively, and AhMYB7, AhTTG1, and AhCSU2 as a positive regulator for the expression of Ah4CL, AhCHS, and AhF3H, respectively. However, AhbHLH and AhGL3 revealed nil-to-little relation with the expression of flavonoid biosynthetic pathway genes. Correlational analysis between the expression of TFs related to the biosynthesis of flavonoids and the accumulation of phenolics, flavonols, and anthocyanins indicated coregulation of flavonoid synthesis by TFs under water deficit conditions in peanut. This study would provide insight into the role of flavonoid biosynthetic pathway in drought response in peanut and would aid to develop drought-tolerant varieties of peanut.
Arachis hypogaea
(peanut) is a potential source of bioactive compounds including flavonols and proanthocyanidins, which have gained particular interest of metabolic engineering owing to their significance in the growth, development and defense responses in plants. To gain insight of proanthocyanidins and flavonols production in
A. hypogaea
,
Leucoanthocyanidin reductase (AhLAR)
and
Flavonol synthase (AhFLS)
enzymes responsible for their production, have been structurally, transcriptionally and functionally characterized. Structural and functional analysis of putative protein sequence of
AhFLS
indicated two functional motifs 2OG-FeII_Oxy and DIOX_N
,
while six functional motifs belonging to the families of NAD-dependent dehydratase, 3,
β hydroxysteroid dehydrogenase
and NmrA-like family were observed in case of
AhLAR.
Promoter sequence analysis unraveled several promoter elements related to the development regulation, environmental stress responses and hormonal signaling. Furthermore, the expression analysis of
AhFLS
and
AhLAR
and accumulation pattern analysis of proanthocyanidins and flavonols in three selected cultivars of
A. hypogaea
under saline environment confirmed their role against salinity in genotype-dependent and stress level-dependent manner. Correlation studies revealed that AhFLS and AhLAR expression is not directly dependent on the antioxidant enzymes activity, biochemical and growth parameters but higher Pearson r value depicted some level of dependency. This detailed study of AhLAR and AhFLS can assist in the metabolic engineering of flavonoid biosynthetic pathway to produce stress tolerant varieties and production of proanthocyanidins and flavonols at an industrial scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.