Energy budget-based distributed modeling of snow and glacier melt runoff is essential in a hydrologic model to accurately describe hydrologic processes in cold regions and high-altitude catchments. We developed herein an integrated modeling system with an energy budget-based multilayer scheme for clean glaciers, a single-layer scheme for debris-covered glaciers, and multilayer scheme for seasonal snow over glacier, soil, and forest within a distributed biosphere hydrological modeling framework. Model capability is demonstrated for Hunza River Basin (13,733 km 2 ) in the Karakoram region of Pakistan on a 500 m grid for 3 hydrologic years (2002)(2003)(2004). Discharge simulation results show good agreement with observations (Nash-Sutcliffe efficiency = 0.93). Flow composition analysis reveals that the runoff regime is strongly controlled by the snow and glacier melt runoff (50% snowmelt and 33% glacier melt). Pixel-by-pixel evaluation of the simulated spatial distribution of snow-covered area against Moderate Resolution Imaging Spectroradiometer-derived 8 day maximum snow cover extent data indicates that the areal extent of snow cover is reproduced well, with average accuracy 84% and average absolute bias 7%. The 3 year mean value of net mass balance (NMB) was estimated at +0.04 myr À1 . It is interesting that individual glaciers show similar characteristics of NMB over 3 years, suggesting that both topography and glacier hypsometry play key roles in glacier mass balance. This study provides a basis for potential application of such an integrated model to the entire Hindu-Kush-Karakoram-Himalaya region toward simulating snow and glacier hydrologic processes within a water and energy balance-based, distributed hydrological modeling framework.
The present study was conducted to evaluate the potential of rice rhizosphere associated antagonistic bacteria for growth promotion and disease suppression of bacterial leaf blight (BLB). A total of 811 rhizospheric bacteria were isolated and screened against 3 prevalent strains of BLB pathogen Xanthomonas oryzae pv. oryzae (Xoo) of which five antagonistic bacteria, i.e., Pseudomonas spp. E227, E233, Rh323, Serratia sp. Rh269 and Bacillus sp. Rh219 showed antagonistic potential (zone of inhibition 1–19 mm). Production of siderophores was found to be the common biocontrol determinant and all the strains solubilized inorganic phosphate (82–116 μg mL-1) and produced indole acetic acid (0.48–1.85 mg L-1) in vitro. All antagonistic bacteria were non-pathogenic to rice, and their co-inoculation significantly improved plant health in terms of reduced diseased leaf area (80%), improved shoot length (31%), root length (41%) and plant dry weight (60%) as compared to infected control plants. Furthermore, under pathogen pressure, bacterial inoculation resulted in increased activity of defense related enzymes including phenylalanine ammonia-lyase and polyphenol oxidase, along with 86% increase in peroxidase and 53% increase in catalase enzyme activities in plants inoculated with Pseudomonas sp. Rh323 as well as co-inoculated plants. Bacterial strains showed good colonization potential in the rice rhizosphere up to 21 days after seed inoculation. Application of bacterial consortia in the field resulted in an increase of 31% in grain yield and 10% in straw yield over non-inoculated plots. Although, yield increase was statistically non-significant but was accomplished with overall saving of 20% chemical fertilizers. The study showed that Pseudomonas sp. Rh323 can be used to develop dual-purpose inoculum which can serve not only to suppress BLB but also to promote plant growth in rice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.