Extreme heat in summer is frequent in parts of China, and this likely affects the fitness of the beetle Ophraella communa, a biological control agent of invasive common ragweed. Here, we assessed the life history parameters of O. communa when its different developmental stages were exposed to high temperatures (40, 42 and 44 °C, with 28 °C as a control) for 3 h each day for 3, 5, 5, and 5 days, respectively (by stage). The larval stage was the most sensitive stage, with the lowest survival rate under heat stress. Egg and pupal survival significantly decreased only at 44 °C, and these two stages showed relative heat tolerance, while the adult stage was the most tolerant stage, with the highest survival rates. High temperatures showed positive effects on the female proportion, but there was no stage-specific response. Treated adults showed the highest fecundity under heat stress and a similar adult lifespan to that in the control. High temperatures decreased the F1 egg hatching rate, but the differences among stages were not significant. Negative carry-over effects of heat stress on subsequent stages and progenies’ survival were also observed. Overall, heat effects depend on the temperature and life stage, and the adult stage was the most tolerant stage. Ophraella communa possesses a degree of heat tolerance that allows it to survive on hot days in summer.
Mango (Mangifera indica) is widely grown across southern China, especially in the provinces of Guangxi, Hainan, Yunnan, Sichuan, and Taiwan. Guangxi itself has over 86,667 ha of mango production. The purpose of this study was to identify Colletotrichum species associated with mango in different parts of Guangxi and examine their pathogenicity on leaves and fruits of mango in vitro. Diseased leaves were collected from 25 mango orchards in different areas of Guangxi province. Sixty-five isolates were obtained from mango leaves with anthracnose symptoms, and these were further characterized based on morphology and DNA sequencing. Twenty-nine isolates from different areas were selected for sequencing and analyses of the internal transcribed spacer region, glyceraldehyde-3-phosphate dehydrogenase, partial actin, β-tubulin, and chitin synthase genomic regions. The most common fungal isolates were these three species: Colletotrichum asianum, C. fructicola, and C. siamense. C. asianum was the most common and widely distributed in Guangxi (51.7%), followed by C. fructicola (37.9%) and C. siamense (10.2%), both found in Tiandong, Tianyang, and Wuming counties. There was no evidence of geographical specialization of the different species. Pathogenicity assays showed that all isolates were pathogenic to mango leaves and fruit (cultivar Tainong). No relationship was found between origin of isolates and their virulence. This is the first description of C. asianum, C. fructicola, and C. siamense as causal agents of mango leaf anthracnose from Guangxi province, China.
Mango (Mangifera indica L.) is an economically significant fruit crop in provinces of southern China including Hainan, Yunnan, Sichuan, Guizhou, Guangdong and Fujian. The objective of this study was to examine the diversity of Colletotrichum species infecting mango cultivars in major growing areas in China, using morphological and molecular techniques together with pathogenicity tests on detached leaves and fruits. Over 200 Colletotrichum isolates were obtained across all mango orchards investigated, and 128 of them were selected for sequencing and analyses of actin (ACT), chitin synthase (CHS-1), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), the internal transcribed spacer (ITS) region, β-tubulin (TUB2) genomic regions. Our results showed that the most common fungal isolates associated with mango in southern China involved 13 species: Colletotrichum asianum, C. cliviicola, C. cordylinicola, C. endophytica, C. fructicola, C. gigasporum, C. gloeosporioides, C. karstii, C. liaoningense, C. musae, C. scovillei, C. siamense and C. tropicale. The dominant species were C. asianum and C. siamense each accounting for 30%, and C. fructicola for 25%. Only C. asianum, C. fructicola, C. scovillei and C. siamense have previously been reported on mango, while the other nine Colletotrichum species listed above were first reports associated with mango in China. From this study, five Colletotrichum species, namely C. cordylinicola, C. endophytica, C. gigasporum, C. liaoningense and C. musae were the first report on mango worldwide. Pathogenicity tests revealed that all 13 species caused symptoms on artificially wounded mango fruit and leaves (cv. Tainong). There was no obvious relationship between aggressiveness and the geographic origin of the isolates. These findings will help in mango disease management and future disease resistance breeding.
Ophraella communa LeSage is an effective biological control agent of common ragweed, Ambrosia artemisiifolia L., which competes with crops and causes allergic rhinitis and asthma. However, thermal stress negatively affects the developmental fitness and body size of this beetle. High temperatures cause a variety of physiological stress responses in insects, which can cause oxidative damage. We investigated the total protein content and activity of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), and peroxidases (PODs) in O. communa adults when its different developmental stages were exposed to high temperatures (40, 42, and 44°C) for 3 h each day for 3, 5, 5, and 5 days, respectively (by stage), and a whole generation to high temperatures (40, 42, and 44°C) for 3 h each day. A control group was reared at 28 ± 2°C. Under short-term daily phasic high-temperature stress, total protein contents were close to the control as a whole; overall, SOD activities increased significantly, CAT activities were closer to or even higher than the control, POD activities increased at 40°C, decreased at 42 or 44°C; stage-specific response was also observed. Under long-term daily phasic high-temperature stress, total protein content increased significantly at 44°C, SOD activities increased at higher temperatures, decreased at 44°C; CAT activities of females increased at ≤42°C, and decreased at 44°C, CAT activities of males decreased significantly; POD activities of females increased at 40°C, decreased at ≥42°C, POD activities of males decreased at 44°C; and antioxidant enzymes activities in females were significantly higher than those in males. Antioxidative enzymes protect O. communa from oxidative damage caused by thermal stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.