SummaryIncretins, hormones released by the gut after meal ingestion, are essential for maintaining systemic glucose homeostasis by stimulating insulin secretion. The effect of incretins on insulin secretion occurs only at elevated glucose concentrations and is mediated by cAMP signaling, but the mechanism linking glucose metabolism and cAMP action in insulin secretion is unknown. We show here, using a metabolomics-based approach, that cytosolic glutamate derived from the malate-aspartate shuttle upon glucose stimulation underlies the stimulatory effect of incretins and that glutamate uptake into insulin granules mediated by cAMP/PKA signaling amplifies insulin release. Glutamate production is diminished in an incretin-unresponsive, insulin-secreting β cell line and pancreatic islets of animal models of human diabetes and obesity. Conversely, a membrane-permeable glutamate precursor restores amplification of insulin secretion in these models. Thus, cytosolic glutamate represents the elusive link between glucose metabolism and cAMP action in incretin-induced insulin secretion.
Incretins (GLP-1 and GIP) potentiate insulin secretion through cAMP signaling in pancreatic β-cells in a glucose-dependent manner. We recently proposed a mechanistic model of incretin-induced insulin secretion (IIIS) that requires two critical processes: 1) generation of cytosolic glutamate through the malate-aspartate (MA) shuttle in glucose metabolism and 2) glutamate transport into insulin granules by cAMP signaling to promote insulin granule exocytosis. To directly prove the model, we have established and characterized CRISPR/Cas9-engineered clonal mouse β-cell lines deficient for the genes critical in these two processes: aspartate aminotransferase 1 (AST1, gene symbol Got1), a key enzyme in the MA shuttle, which generates cytosolic glutamate, and the vesicular glutamate transporters (VGLUT1, VGLUT2, and VGLUT3, gene symbol Slc17a7, Slc17a6, and Slc17a8, respectively), which participate in glutamate transport into secretory vesicles. Got1 knockout (KO) β-cell lines were defective in cytosolic glutamate production from glucose and showed impaired IIIS. Unexpectedly, different from the previous finding that global Slc17a7 KO mice exhibited impaired IIIS from pancreatic islets, β-cell specific Slc17a7 KO mice showed no significant impairment in IIIS, as assessed by pancreas perfusion experiment. Single Slc17a7 KO β-cell lines also retained IIIS, probably due to compensatory upregulation of Slc17a6. Interestingly, triple KO of Slc17a7, Slc17a6, and Slc17a8 diminished IIIS, which was rescued by exogenously introduced wild-type Slc17a7 or Slc17a6 genes. The present study provides direct evidence for the essential roles of AST1 and VGLUTs in β-cell glutamate signaling for IIIS and also shows the usefulness of the CRISPR/Cas9 system for studying β-cells by simultaneous disruption of multiple genes.
Aims/Introduction Glutamine is the most abundant amino acid in the circulation. In this study, we investigated cell signaling in the amplification of insulin secretion by glutamine. Materials and Methods Clonal pancreatic β‐cells MIN6‐K8, wild‐type B6 mouse islets, glutamate dehydrogenase (GDH) knockout clonal β‐cells (Glud1KOβCL), and glutamate‐oxaloacetate transaminase 1 (GOT1) knockout clonal β‐cells (Got1KOβCL) were studied. Insulin secretion from these cells and islets was examined under various conditions, and intracellular glutamine metabolism was assessed by metabolic flux analysis. Intracellular Ca2+ concentration ([Ca2+]i) was also measured. Results Glutamine dose‐dependently amplified insulin secretion in the presence of high glucose in both MIN6‐K8 cells and Glud1KOβCL. Inhibition of glutaminases, the enzymes that convert glutamine to glutamate, dramatically reduced the glutamine‐amplifying effect on insulin secretion. A substantial amount of glutamate was produced from glutamine through direct conversion by glutaminases. Glutamine also increased [Ca2+]i at high glucose, which was abolished by inhibition of glutaminases. Glutamic acid dimethylester (dm‐Glu), a membrane permeable glutamate precursor that is converted to glutamate in cells, increased [Ca2+]i as well as induced insulin secretion at high glucose. These effects of glutamine and dm‐Glu were dependent on calcium influx. Glutamine also induced insulin secretion in clonal β‐cells MIN6‐m14, which otherwise exhibit no insulin secretory response to glucose. Conclusions Glutamate converted from glutamine is an essential mediator that enhances calcium signaling in the glutamine‐amplifying effect on insulin secretion. Our data also suggest that glutamine exerts a permissive effect on glucose‐induced insulin secretion.
We recently established a novel animal model of obese type 2 diabetes (T2D), the Zucker fatty diabetes mellitus (ZFDM) rat strain harboring the fatty mutation (fa) in the leptin receptor gene. Here we performed a phenotypic characterization of the strain, focusing mainly on the prediabetic state. At 6–8 weeks of age, fa/fa male rats exhibited mild glucose intolerance and severe insulin resistance. Although basal insulin secretion was remarkably high in the isolated pancreatic islets, the responses to both glucose stimulation and the incretin GLP-1 were retained. At 10–12 weeks of age, fa/fa male rats exhibited marked glucose intolerance as well as severe insulin resistance similar to that at the earlier age. In the pancreatic islets, the insulin secretory response to glucose stimulation was maintained but the response to the incretin was diminished. In nondiabetic Zucker fatty (ZF) rats, the insulin secretory responses to both glucose stimulation and the incretin in the pancreatic islets were similar to those of ZFDM rats. As islet architecture was destroyed with age in ZFDM rats, a combination of severe insulin resistance, diminished insulin secretory response to incretin, and intrinsic fragility of the islets may cause the development of T2D in this strain.
Insulin secretion from the pancreatic β‐cell (referred to as β‐cell hereafter) plays a central role in glucose homeostasis. Impaired insulin secretion is a major factor contributing to the development of diabetes and, therefore, is an important target for treatment of the disease. Cyclic adenosine monophosphate is a key second messenger in β‐cells that amplifies insulin secretion. Incretins released by the gut potentiate insulin secretion through cyclic adenosine monophosphate signaling in β‐cells, which is the basis for the incretin‐based diabetes therapies now being used worldwide. Despite its importance, the interaction between glucose metabolism and incretin/cyclic adenosine monophosphate signaling in β‐cells has long been unknown. A recent study showed that cytosolic glutamate produced by glucose metabolism in β‐cells is a key signal in incretin‐induced insulin secretion. Here we review the physiological and pathophysiological roles of β‐cell glutamate signaling in incretin‐induced insulin secretion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.