Initiation of subduction is rarely encountered in modern tectonic environments due to its ephemeral and destructive nature. We report the geological and geophysical evidence indicating a transitional phase from buckling to embryonic subduction along the eastern Korean margin. The transition appears to be caused by compressional reactivation of the strike-slip boundary between the continental (Korean Peninsula) and oceanic (Ulleung Basin) crusts since the Early Pliocene. Evidence for compressional reactivation includes (1) a west-dipping major thrust and coincident crustal buckling of the Ulleung Basin; (2) an east-west structural asymmetry inferred from the gravity anomaly and P-wave tomography; and (3) ongoing crustal uplift and high-angle faults along the eastern Korean margin. The juxtaposition of underthrusting and buckling of the crust in the Ulleung Basin, and its associated ubiquitous reverse faulting on the eastern Korean margin, imply the potential development of a new subduction system along the western margin of the East Sea (Japan Sea). We propose that the East Sea comprises two incipient subduction margins (i.e., the Korean and Japanese sides), which are now competing to reach a self-sustaining subduction stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.