The Langmuir-Blodgett (LB) technique provides many possibilities for the control of film thickness, dimensions, and molecular structures on the nanometer scale. Various kinds of dye molecules have been found to form the J-aggregation which has been used as sensitizers of silver halide photography for long time. In recent years, they attract attention as model systems for investigating the ultra-fast exciton dynamics, materials for ultra-fast nonlinear optical devices, fluorescence probes for mitochondrial membranes. We fabricated the merocyanine dye LB films with arachidic acid (AA). In order to observe the J-aggregation of the merocyanine dye LB films, CdCl2 and KHCO3 solutions were added in subphase. From the optical absorption spectra of the mixed dye LB films (6Me-Ds:AA = 1:2) at different layers, the optical absorption peak was about 520 nm. However, the optical absorption peak of the LB films was shifted to 600 nm, when CdCl2 and KHCO3 solutions were added. This is the consequence result to the J-aggregation of the merocyanine dye. We also investigated the optical absorption peak of the LB films according to various time at 60 degrees C and 275 nm UV. We measured the STM morphology of the merocyanine dye LB film (1 layer) before UV irradiation and heat treatment. The morphology size of the LB film on HOPG was 5 nm. The roughness and molecular size were about 66.163 pm and 0.176 nm, respectively. The J-aggregation of this type was also accompanied by large morphological changes. We analyze the morphology and electrical properties of the LB films by the scanning tunneling microscopy (STM).
We fabricated the merocyanine dye LB films with arachidic acid (MD LB films). We compared absorption peak of before and after added Cd2+. The optical absorption peak of the MD LB films was shifted to 610 nm at 535 nm, when Cd2+ ions were added. We also investigated the optical absorption peak of the LB films by various time at 365 nm UV. We confirmed J-aggregation and photolysis properties. This is that studied the application possibility of the switching device and the nonvolatile memory.
Ultra-high pressure positive displacement pump can discharge high pressure water with mass volume, which depends on periodic changes in volume that made by rotation motor. Its high efficiency of discharge is one of the most strong point of positive displacement pump. Due to its simple system structure, it can be miniaturized and lightened. Positive displacement pump can discharge high pressure with stable flow rate, irrespective of pressure fluctuate. This is the reason that positive displacement pump was used instead of centrifugal pump. In this study, shutoff operating system was developed for positive displacement pump to secure safety of high pressure operate. This shutoff system contains controller system, electronic clutch, and relief valve, and each part is mutual supplementation. Speed test was carried out in order to check operation of controller program and electronic clutch and fluid flow, venting experiment of the relief valve. It was confirmed that segment system of ultra-high pressure positive displacement pump is operated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.