We demonstrated a 1.1-µm band extended wideband wavelength-swept laser (WSL) that combined two semiconductor optical amplifiers (SOAs) based on a polygonal scanning wavelength filter. The center wavelengths of the two SOAs were 1020 nm and 1140 nm, respectively. Two SOAs were connected in parallel in the form of a Mach-Zehnder interferometer. At a scanning speed of 1.8 kHz, the 10-dB bandwidth of the spectral output and the average power were approximately 228 nm and 16.88 mW, respectively. Owing to the nonlinear effect of the SOA, a decrease was observed in the bandwidth according to the scanning speed. Moreover, the intensity of the WSL decreased because the oscillation time was smaller than the buildup time. In addition, a cholesteric liquid crystal (CLC) cell was fabricated as an application of WSL, and the dynamic change of the first-order reflection of the CLC cell in the 1-µm band was observed using the WSL. The pitch jumps of the reflection band occurred according to the electric field applied to the CLC cell, and instantaneous changes were observed.
We present a cholesteric liquid crystal (CLC)-based optical fiber temperature sensor using a 1250 nm band wavelength-swept laser (WSL). The WSL is implemented using two semiconductor optical amplifiers (SOAs) with different center wavelengths connected in parallel in the form of a Mach-Zehnder interferometer in a laser resonator. At 3.6 kHz scanning frequency, the 10 dB bandwidth was about 223 nm from 1129 nm to 1352 nm. As the temperature of the CLC cell increased, the long-wavelength edge of the reflection band shifted to shorter wavelengths. The relationship between the temperature change and the central wavelength change of the reflection band was obtained to be almost linear.
Cholesteric liquid crystals (CLCs) can be applied to various physical and chemical sensors because their alignment structures are changed by external stimuli. Here, we propose a CLC device fabricated by vertically forming the helical axis of the CLC between the cross-sections of two optical fiber ferrules. An optical fiber temperature sensor was successfully implemented using the proposed optical fiber ferrule-based CLC device. A wideband wavelength-swept laser with a center wavelength of 1073 nm and scanning range of 220 nm was used as a light source to measure the variations in the reflection spectrum band according to the temperature change in the CLC cell. The wavelength variation of the reflection spectrum band according to the temperature applied to the CLC cell was reversible and changed linearly with a change in the temperature, and the long-wavelength edge variation rate according to the temperature change was −5.0 nm/°C. Additionally, as the temperature applied to the CLC cell increased, the reflection spectrum bandwidth gradually decreased; the reflection spectrum bandwidth varied at a rate of −1.89 nm/°C. The variations in the refractive indices with temperature were calculated from the band wavelengths of the reflection spectrum. The pitch at each temperature was calculated based on the refractive indices and it gradually decreased as the temperature increased.
Broadband wavelength-swept lasers (WSLs) are widely used as light sources in biophotonics and optical fiber sensors. Herein, we present a polygonal mirror scanning wavelength filter (PMSWF)-based broadband WSL using two semiconductor optical amplifiers (SOAs) with different center wavelengths as the gain medium. The 10-dB bandwidth of the wavelength scanning range with 3.6 kHz scanning frequency was approximately 223 nm, from 1129 nm to 1352 nm. When the scanning frequency of the WSL was increased, the intensity and bandwidth decreased. The main reason for this is that the laser oscillation time becomes insufficient as the scanning frequency increases. We analyzed the intensity and bandwidth decrease according to the increase in the scanning frequency in the WSL through the concept of saturation limit frequency. In addition, optical alignment is important for realizing broadband WSLs. The optimal condition can be determined by analyzing the beam alignment according to the position of the diffraction grating and the lenses in the PMSWF. This broadband WSL is specially expected to be used as a light source in broadband distributed dynamic FBG fiber-optic sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.