The dynamics of multi-agent in nature have been largely studied for a long time to investigate how the aggregation of agents can move smoothly in complex environments without collision. The main insights can be summarized such that the aggregated dynamics of animals and particles can be explained by an individual's simple rules. In a similar vein, we conjecture that such simple rules for vehicle maneuvering can accommodate the fluid flow of traffic and reduce car accidents in highway and urban areas. In this paper, we first show the Reynolds' three rules are applicable to autonomous driving on a single lane. Moreover, we provide additional requirements and algorithms for multiple lanes. Based on these results, we show that the proposed nature-inspired driving maneuver can increase traffic flow by 1) mitigating shockwave at bottlenecks and 2) extending the perception range for better path planning, which requires the support of the vehicle autonomy and wireless communication, respectively. Finally, we prove the feasibility of our work with experiments using multiple UAVs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.