Responsive photonic crystals (PCs) have attracted much attention due to their broad applications in the field of chemical and physical sensing through varying optical properties when exposed to external stimuli. In particular, assembly of block copolymers (BCPs) has proven to be a robust platform for constructing PCs in the form of films or bulk. Here, the generation of BCPs photonic microspheres is presented with 3D periodical concentric lamellar structures through confined self-assembly. The structural color of the spherical PCs can be tuned by selective swelling of one block, yielding large change of optical property through varying both layer thickness and refraction index of the domains. The as-formed spherical PCs demonstrate large reflection wavelength shift (≈400-700 nm) under organic solvent permeation and pH adjustment. Spherical shape and structural symmetry endow the formed spherical PCs with rotation independence and monochrome, which is potentially useful in the fields of displays, sensing, and diagnostics.
The theoretical extinction coefficients of gold nanoparticles (AuNPs) have been mainly verified by the analytical solving of the Maxwell equation for an ideal sphere, which was firstly founded by Mie (generally referred to as Mie theory). However, in principle, it has not been directly feasible with experimental verification especially for relatively large AuNPs (i.e., >40 nm), as conventionally proposed synthetic methods have inevitably resulted in a polygonal shaped, non-ideal Au nanosphere. Here, mono-crystalline, ultra-smooth, and highly spherical AuNPs of 40-100 nm were prepared by the procedure reported in our recent work (ACS Nano, 2013, 7, 11064). The extinction coefficients of the ideally spherical AuNPs of 40-100 nm were empirically extracted using the Beer-Lambert law, and were then compared with the theoretical limits obtained by the analytical and numerical methods. The obtained extinction coefficients of the ideally spherical AuNPs herein agree much more closely with the theoretical limits, compared with those of the faceted or polygonal shaped AuNPs. In addition, in order to further elucidate the importance of being spherical, we systematically compared our ideally spherical AuNPs with the polygonal counterparts; effectively addressing the role of the surface morphology on the spectral responses in both theoretical and experimental manners.
Improvement in the rate capability needs to be addressed for utilization of a Si anode in high-power Li-ion batteries. Regarding the rate capability, its improvement by Si–C nanocomposites seems to be somewhat saturated, thus indicating that the other method should be tried for further enhancement of the rate capability. Here, we introduce Si nanoparticles uniformly coated with nanometer-thick polyacrylonitrile (PAN) with better wettability to liquid electrolytes and minimizing electronic resistance, which might result from a thick PAN coating: the effective contact surface area made by the contact of Si nanoparticles and liquid electrolyte is increased for larger Li-ion current, leading to ultrafast rate capability retaining 62% of the 0.2C rate discharge capacity at 100C. In addition, a strong adhesive property of PAN provides highly mechanically robust Si anodes for multielectrode-stacked flexible lithium-ion batteries, which show no physical damage after 30 000 bending cycles with a bending radius of 25 mm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.