BackgroundBecause associations have been reported between inhaled ambient ultrafine particles and increased risk of cardiopulmonary disease, it has been suggested that inhaled engineered nanoparticles (NPs) may also induce adverse effects on the cardiovascular system.ObjectiveWe examined the long-term cardiovascular effects of inhaled nickel hydroxide NPs (nano-NH) using a sensitive mouse model.MethodsHyperlipidemic, apoprotein E-deficient (ApoE−/−) mice were exposed to nano-NH at either 0 or 79 μg Ni/m3, via a whole-body inhalation system, for 5 hr/day, 5 days/week, for either 1 week or 5 months. We measured various indicators of oxidative stress and inflammation in the lung and cardiovascular tissue, and we determined plaque formation on the ascending aorta.ResultsInhaled nano-NH induced significant oxidative stress and inflammation in the pulmonary and extrapulmonary organs, indicated by up-regulated mRNA levels of certain antioxidant enzyme and inflammatory cytokine genes; increased mitochondrial DNA damage in the aorta; significant signs of inflammation in bronchoalveolar lavage fluid; changes in lung histopathology; and induction of acute-phase response. In addition, after 5-month exposures, nano-NH exacerbated the progression of atherosclerosis in ApoE−/− mice.ConclusionsThis is the first study to report long-term cardiovascular toxicity of an inhaled nanomaterial. Our results clearly demonstrate that long-term exposure to inhaled nano-NH can induce oxidative stress and inflammation, not only in the lung but also in the cardiovascular system, and that this stress and inflammation can ultimately contribute to progression of atherosclerosis in ApoE−/− mice.
Short and long-term pulmonary response to inhaled nickel hydroxide nanoparticles (nano-Ni(OH)2, CMD = 40 nm) in C57BL/6 mice was assessed using a whole body exposure system. For short-term studies mice were exposed for 4 h to nominal concentrations of 100, 500, and 1000 mg/m3. For long-term studies mice were exposed for 5 h/d, 5 d/w, for up to 5 months (m) to a nominal concentration of 100 mg/m3. Particle morphology, size distribution, chemical composition, solubility, and intrinsic oxidative capacity were determined. Markers of lung injury and inflammation in bronchoalveolar lavage fluid (BALF); histopathology; and lung tissue elemental nickel content and mRNA changes in macrophage inflammatory protein-2 (Mip-2), chemokine ligand 2 (Ccl2), interleukin 1-alpha (Il-1α), and tumor necrosis factor-alpha (Tnf-α) were assessed. Dose-related changes in BALF analyses were observed 24 h after short-term studies while significant changes were noted after 3 m and/or 5 m of exposure (24 h). Nickel content was detected in lung tissue, Ccl2 was most pronouncedly expressed, and histological changes were noted after 5 m of exposure. Collectively, data illustrates nano-Ni(OH)2 can induce inflammatory responses in C57BL/6 mice.
In this pilot study, we investigated which physicochemical properties of nickel hydroxide nanoparticles (nano-NH) were mainly responsible in inducing pulmonary toxicity. First, we studied the role of nickel ions solubilized from nano-NH by comparing the toxic effects of nano-NH to those of readily soluble nickel sulfate nanoparticles (nano-NS). Additionally, to test whether there was a non-specific stress response due to particle morphology, we compared the toxicity of nano-NH with that of carbon nanoparticles (nano-C) and titanium dioxide nanoparticles (nano-Ti), both of which had similar physical properties such as particle size and shape, to nano-NH. We exposed mice to each type of nanoparticles for 4?h via a whole-body inhalation system and examined oxidative stress and inflammatory responses in the lung. We also determined the lung burden and clearance of Ni following nano-NH and nano-NS exposures. The results showed that lung deposition of nano-NH was significantly greater than that of nano-NS and nano-NH appeared to have stronger inflammogenic potential than nano-NS even when lung Ni burden taken into consideration. This suggests that the toxicity of nano-NH is not driven solely by released Ni ions from deposited nano-NH particles. However, it is unlikely that the greater toxic potential of nano-NH is attributable to a generic stress response from any nanoparticle exposure, since nano-C and nano-Ti did not elicit toxic responses similar to those of nano-NH. These results indicate that the observed pulmonary toxicity by inhaled nano-NH were chemical-specific and deposited dose and solubility are key factors to understand toxicity induced by nano-NH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.