The thermal properties, morphologies, oxygen barrier properties, and electrical conductivities of poly(vinyl alcohol) (PVA) hybrid films containing different nanofillers were compared. For the fabrication of the PVA hybrid films, we used reduced graphene oxide (RGO) synthesized from graphite or functionalized hexadecylamine-graphene sheets (HDA-GS) obtained from HDA and GS as a reinforcing filler. The properties of the PVA hybrid films fabricated by intercalating PVA and the fillers for different filler contents ranging from 3 to 10% w/w were then compared. The dispersions of the graphene fillers in the matrix polymers were examined using wide-angle X-ray diffraction and field emission scanning electron microscopy, and the changes in their thermal properties were observed using differential scanning calorimetry and thermogravimetric analysis. Moreover, we measured the oxygen permeability and electrical conductivity of the films to investigate their industrial applications. In addition, all the physical properties of the PVA composites obtained using the two nanofillers were compared.
Two series of thermotropic liquid-crystalline polymers (TLCPs) were synthesized by reacting various dialkoxy terephthalate units with hydroquinone (HQ) and 2,6-naphthalene diol (Naph). The dialkoxy terephthalate moieties used in this study include 2,5-diethoxyterephthalate, 2,5-dibutoxyterephthalate, and 2,5-dihexyloxy-terephthalate. All the TLCPs synthesized in this study formed nematic phases. The molecular motions according to the length of the dialkoxy side groups in the TLCPs were evaluated by 13C cross-polarization/magic angle spinning nuclear magnetic resonance spectroscopy. The thermal properties and molecular dynamics of the TLCPs are found to be affected by the length of the dialkoxy side group and the aromatic diol unit in the main chain. Further, the thermal behaviors, liquid crystalline mesophases, and degree of crystallinity of the two series of TLCPs, i.e., HQ- and Naph-TLCPs, are compared.
Two series of thermotropic liquid crystal copolymers (TLCPs) with different monomer structures and compositions were synthesized. The copolymers in the first series consisted of 2,5-diethoxyterephthalic acid (ETA), hydroquinone (HQ), and p-hydroxybenzoic acid (HBA), whereas those in the second series contained ETA, 2,7-dihydroxynaphthalene (DHN), and HBA. In both series, the molar ratio of HBA to the other monomers varied from 0 to 5. The thermal properties, degree of crystallinity, and stability of the liquid crystalline mesophase of the copolymers obtained at each HBA ratio were evaluated and compared. Overall, at each HBA content, the DHN-containing copolymer had better thermal properties, but the HQ-containing copolymer exhibited a higher degree of crystallinity and a more stable liquid crystalline mesophase. Furthermore, similar thermal stabilities were observed in both series. The dependence of the molecular dynamics of the TLCPs on the monomer structure was explained using 13C magic-angle spinning/cross-polarization nuclear magnetic resonance spectroscopy. An in-depth investigation of the relaxation time of each carbon revealed that the molecular motions of the TLCPs were greatly influenced by the structures of the monomers present in the main chain. The molecular dynamics of the HQ and DHN monomers in the two series were evaluated and compared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.