Background The accurate temporal analysis of muscle activation is of great interest in many research areas, spanning from neurorobotic systems to the assessment of altered locomotion patterns in orthopedic and neurological patients and the monitoring of their motor rehabilitation. The performance of the existing muscle activity detectors is strongly affected by both the SNR of the surface electromyography (sEMG) signals and the set of features used to detect the activation intervals. This work aims at introducing and validating a powerful approach to detect muscle activation intervals from sEMG signals, based on long short-term memory (LSTM) recurrent neural networks. Methods First, the applicability of the proposed LSTM-based muscle activity detector (LSTM-MAD) is studied through simulated sEMG signals, comparing the LSTM-MAD performance against other two widely used approaches, i.e., the standard approach based on Teager–Kaiser Energy Operator (TKEO) and the traditional approach, used in clinical gait analysis, based on a double-threshold statistical detector (Stat). Second, the effect of the Signal-to-Noise Ratio (SNR) on the performance of the LSTM-MAD is assessed considering simulated signals with nine different SNR values. Finally, the newly introduced approach is validated on real sEMG signals, acquired during both physiological and pathological gait. Electromyography recordings from a total of 20 subjects (8 healthy individuals, 6 orthopedic patients, and 6 neurological patients) were included in the analysis. Results The proposed algorithm overcomes the main limitations of the other tested approaches and it works directly on sEMG signals, without the need for background-noise and SNR estimation (as in Stat). Results demonstrate that LSTM-MAD outperforms the other approaches, revealing higher values of F1-score (F1-score > 0.91) and Jaccard similarity index (Jaccard > 0.85), and lower values of onset/offset bias (average absolute bias < 6 ms), both on simulated and real sEMG signals. Moreover, the advantages of using the LSTM-MAD algorithm are particularly evident for signals featuring a low to medium SNR. Conclusions The presented approach LSTM-MAD revealed excellent performances against TKEO and Stat. The validation carried out both on simulated and real signals, considering normal as well as pathological motor function during locomotion, demonstrated that it can be considered a powerful tool in the accurate and effective recognition/distinction of muscle activity from background noise in sEMG signals.
Sensorimotor integration is the process through which the human brain plans the motor program execution according to external sources. Within this context, corticomuscular and corticokinematic coherence analyses are common methods to investigate the mechanism underlying the central control of muscle activation. This requires the synchronous acquisition of several physiological signals, including EEG and sEMG. Nevertheless, physical constraints of the current, mostly wired, technologies limit their application in dynamic and naturalistic contexts. In fact, although many efforts were made in the development of biomedical instrumentation for EEG and HD-sEMG signal acquisition, the need for an integrated wireless system is emerging. We hereby describe the design and validation of a new fully wireless body sensor network for the integrated acquisition of EEG and HD-sEMG signals. This Body Sensor Network is composed of wireless bio-signal acquisition modules, named sensor units, and a set of synchronization modules used as a general-purpose system for time-locked recordings. The system was characterized in terms of accuracy of the synchronization and quality of the collected signals. An in-depth characterization of the entire system and an end-to-end comparison of the wireless EEG sensor unit with a wired benchmark EEG device were performed. The proposed device represents an advancement of the State-of-the-Art technology allowing the integrated acquisition of EEG and HD-sEMG signals for the study of sensorimotor integration.
Muscle activity monitoring in dynamic conditions is a crucial need in different scenarios, ranging from sport to rehabilitation science and applied physiology. The acquisition of surface electromyographic (sEMG) signals by means of grids of electrodes (High-Density sEMG, HD-sEMG) allows to obtain relevant information on muscle function and recruitment strategies. During dynamic conditions, this possibility demands both a wearable and miniaturized acquisition system and a system of electrodes easy to wear, assuring a stable electrode-skin interface. While recent advancements have been made on the former issue, detection systems specifically designed for dynamic conditions are at best incipient. The aim of this work is to design, characterize, and test a wearable, HD-sEMG detection system based on a textile technology. A 32-electrodes, 15 mm interelectrode distance textile grid was designed and prototyped. The electrical properties of the material constituting the detection system and of the electrode-skin interface were characterized. The quality of sEMG signals was assessed in both static and dynamic contractions. The performance of the textile detection system was comparable to that of conventional systems in terms of stability of the traces, properties of the electrode-skin interface and quality of the collected sEMG signals during quasi-isometric and highly dynamic tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.