From an engineering point of view, the survivability of a system is defined as its ability to continue to operate despite a natural or human-made disturbance; for example a serious mechanical fault, a human error, or a malicious cyber or physical attack. In the context of critical infrastructures, due to their relevance for the public wellness, it is mandatory to improve the robustness of such systems in order to ensure the availability of essential services such as the distribution of water, gas and electrical power. Nowadays, due to the increasing number of cyber incidents, the definition of protection strategies, able to improve the survivability level of this infrastructure, is at the heart of the scientific debate. In this chapter we propose a procedure based on three steps aimed at improving infrastructure survivability. In the first stage we propose some approaches to identify the criticality degree of each subsystem composing the infrastructure, in the second stage we propose a method to aggregate multiple criticality evaluations performed by subject matter experts by providing a unique holistic indicator. Finally, on the basis of such indicator, we propose a protection strategy to improve the robustness of the entire system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.