BackgroundMuscle overactivity is one of the positive signs of upper motor neuron lesions. In these patients, the loss of muscle length and extensibility resulting from soft tissue rearrangement has been suggested as a contributing cause of muscle overactivity in response to stretching.ObjectiveTo assess the effects of surgical lengthening of the quadriceps femoris (QF) muscle-tendon unit by aponeurectomy on muscle spasticity.MethodsThis is a case-control study on chronic stroke patients with hemiparesis that have undergone lower limb functional surgery over a 8-year period. CASEs underwent corrective surgery for both the foot and knee deviations, inclusive of a QF aponeurectomy. Controls (CTRLs) underwent corrective surgery for foot deviations only. QF spasticity was assessed with the Modified Tardieu Scale (MTS) before and 1 month after surgery. The Wilcoxon test was used to assess MTS variations over time and the Mann–Whitney test was used to verify the presence of group differences at the 1 month mark.ResultsNinety-three patients were included: 57 cases (30F, 1–34 years from lesion) and 36 controls (12F, 1–35 years from lesion). Before surgery, both CASEs and CTRLs had similar MTS scores (median MTS = 3) and functional characteristics. One month after surgery, QF spasticity was significantly lower in the CASEs compared to CTRLs (p = 0.033) due to a significant reduction of the median MTS score from 3 to 0 in the CASE group (p < 0.001) and no variations in the CTRL group (p = 0.468). About half of the cases attained clinically significant MTS reductions and complete symptom relief even many years from the stroke.ConclusionsFunctional surgery inclusive of QF aponeurectomy can be effective in reducing or suppressing spasticity in chronic stroke patients. This is possibly a result of the reduction in neuromuscular spindle activation due to a decrease in muscle shortening, passive tension, and stiffness.
Dystonia is a disabling and disfiguring disorder that can often affect many aspects of patients' daily lives, and lower their self-esteem. To date, quality of life (QoL) has been assessed in dystonic patients using generic measures that do not address the specific problems of this diagnostic group. Recently, two disease-specific scales "The Cervical Dystonia Impact Profile (CDIP-58)" and the "Craniocervical Dystonia Questionnaire (CDQ-24)" were validated for measuring QoL in craniocervical dystonia patients. No disease-specific scales for QoL for dystonic patients are currently available in Italian. The aim of our study was to produce and validate the Italian version of the CDIP-58 and CDQ-24. We obtained the Italian version of CDQ-24 and CDIP-58 with a back-translation design. Both scales were applied to a population of 94 craniocervical dystonia patients along with the Short Form 36 health-survey questionnaire (SF-36), both before and 4 weeks after botulinum toxin therapy. A group of 65 controls matched for sex, age and comorbidity underwent the SF-36. Internal consistency was satisfactory for all subscales. Both the CDIP-58 and CDQ-24 showed moderate to high correlations with similar items of the SF-36. Sensitivity to change was confirmed by highly significant improvements in all CDQ-24 subscales and by moderate improvements in three out of eight CDIP-58 subscales and total score. This is the first Italian study on QoL in dystonia patients. We validated the Italian version of two disease-specific questionnaires to evaluate QoL in craniocervical dystonia patients. These scales could be useful for both clinical practice and clinical trials.
IntroductionCharcot-Marie-Tooth disease (CMT) is a slow and progressive peripheral motor sensory neuropathy frequently associated with the cavo-varus foot deformity. We conducted a scoping review on the clinical scales used to assess foot deviations in CMT patients and analyzed their metric properties.Evidence AcquisitionA first search was conducted to retrieve all scales used to assess foot characteristics in CMT patients from the Medline, Web of Science, Google Scholar, Cochrane, and PEDro databases. A second search was conducted to include all studies that evaluated the metric properties of such identified scales from the same databases. We followed the methodologic guidelines specific for scoping reviews and used the PICO framework to set the eligibility criteria. Two independent investigators screened all papers.Evidence SynthesisThe first search found 724 papers. Of these, 41 were included, using six different scales: “Foot Posture Index” (FPI), “Foot Function Index”, “Maryland Foot Score”, “American Orthopedic Foot & Ankle Society's Hindfoot Evaluation Scale”, “Foot Health Status Questionnaire”, Wicart-Seringe grade. The second search produced 259 papers. Of these, 49 regarding the metric properties of these scales were included. We presented and analyzed the properties of all identified scales in terms of developmental history, clinical characteristics (domains, items, scores), metric characteristics (uni-dimensionality, inter- and intra-rater reliability, concurrent validity, responsiveness), and operational characteristics (normative values, manual availability, learning time and assessors' characteristics).ConclusionsOur results suggested the adoption of the six-item version of the FPI scale (FPI-6) for foot assessment in the CMT population, with scoring provided by Rasch Analysis. This scale has demonstrated high applicability in different cohorts after a short training period for clinicians, along with good psychometric properties. FPI-6 can help health professionals to assess foot deformity in CMT patients over the years.
In literature, indices of overall walking ability that are based on ground reaction forces have been proposed because of their ease of administration with patients. In this study, we analyzed the correlation between the indices of dynamic loading and propulsion ability of 40 chronic hemiparetic post-stroke patients with equinus foot deviation and a set of clinical assessments of ankle joint deviations and walking ability. Ankle passive and active range of motion (ROM) and triceps surae spasticity were considered, along with walking speed and three complementary scales of walking ability focusing respectively on the need for assistance on functional mobility, including balance and transfers, and the limitation in social participation. The correlation between the ground reaction force-based indices and both clinical and functional variables was carried out using the non-parametric Spearman correlation coefficient. Both indices were correlated to 8 of the 10 investigated variables, thus supporting their use. In particular, the dynamic propulsive ability was correlated with all functional scales (rho = 0.5, p < 0.01), and has the advantage of being a continuous variable. Among clinical assessments, limited ankle ROM affected walking ability the most, while spasticity did not. Since the acquisition of ground reaction forces does not require any patient prepping, the derived indices can be used during the rehabilitation period to quickly detect small improvements that, over time, might lead to the broad changes detectable by clinical scales, as well as to immediately highlight the lack of these improvements, thus suggesting adjustments to the ongoing rehabilitation approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.