We study a tractable opinion dynamics model that generates long-run disagreements and persistent opinion fluctuations. Our model involves an inhomogeneous stochastic gossip process of continuous opinion dynamics in a society consisting of two types of agents: (1) regular agents who update their beliefs according to information that they receive from their social neighbors and (2) stubborn agents who never update their opinions and might represent leaders, political parties, or media sources attempting to influence the beliefs in the rest of the society. When the society contains stubborn agents with different opinions, the belief dynamics never lead to a consensus (among the regular agents). Instead, beliefs in the society fail to converge almost surely, the belief profile keeps on fluctuating in an ergodic fashion, and it converges in law to a nondegenerate random vector. The structure of the graph describing the social network and the location of the stubborn agents within it shape the opinion dynamics. The expected belief vector is proved to evolve according to an ordinary differential equation coinciding with the Kolmogorov backward equation of a continuous-time Markov chain on the graph with absorbing states corresponding to the stubborn agents, and hence to converge to a harmonic vector, with every regular agent's value being the weighted average of its neighbors' values, and boundary conditions corresponding to the stubborn agents' beliefs. Expected cross products of the agents' beliefs allow for a similar characterization in terms of coupled Markov chains on the graph describing the social network. We prove that, in large-scale societies, which are highly fluid, meaning that the product of the mixing time of the Markov chain on the graph describing the social network and the relative size of the linkages to stubborn agents vanishes as the population size grows large, a condition of homogeneous influence emerges, whereby the stationary beliefs' marginal distributions of most of the regular agents have approximately equal first and second moments.
Robustness of distributed routing policies is studied for dynamical flow networks, with respect to adversarial disturbances that reduce the link flow capacities. A dynamical flow network is modeled as a system of ordinary differential equations derived from mass conservation laws on a directed acyclic graph with a single origin-destination pair and a constant inflow at the origin. Routing policies regulate the way the inflow at a non-destination node gets split among its outgoing links as a function of the current particle density, while the outflow of a link is modeled to depend on the current particle density on that link through a flow function. The dynamical flow network is called partially transferring if the total inflow at the destination node is asymptotically bounded away from zero, and its weak resilience is measured as the minimum sum of the link-wise magnitude of all disturbances that make it not partially transferring. The weak resilience of a dynamical flow network with arbitrary routing policy is shown to be upper-bounded by the network's min-cut capacity, independently of the initial flow conditions. Moreover, a class of distributed routing policies that rely exclusively on local information on the particle densities, and are locally responsive to that, is shown to yield such maximal weak resilience. These results imply that locality constraints on the information available to the routing policies do not cause
Strong resilience properties of dynamical flow networks are analyzed for distributed routing policies.The latter are characterized by the property that the way the inflow at a non-destination node gets split among its outgoing links is allowed to depend only on local information about the current particle densities on the outgoing links. The strong resilience of the network is defined as the infimum sum of link-wise flow capacity reductions under which the network cannot maintain the asymptotic total inflow to the destination node to be equal to the inflow at the origin. A class of distributed routing policies that are locally responsive to local information is shown to yield the maximum possible strong resilience under such local information constraints for an acyclic dynamical flow network with a single origin-destination pair. The maximal strong resilience achievable is shown to be equal to the minimum node residual capacity of the network. The latter depends on the limit flow of the unperturbed network and is defined as the minimum, among all the non-destination nodes, of the sum, over all the links outgoing from the node, of the differences between the maximum flow capacity and the limit flow of the unperturbed network. We propose a simple convex optimization problem to solve for equilibrium limit flows of the unperturbed network that minimize average delay subject to strong resilience guarantees, and discuss the use of tolls to induce such an equilibrium limit flow in transportation networks. Finally, we present illustrative simulations to discuss the connection between cascaded failures and the resilience properties of the network.
Stability of Wardrop equilibria is analyzed for dynamical transportation networks in which the drivers' route choices are influenced by information at multiple temporal and spatial scales. The considered model involves a continuum of indistinguishable drivers commuting between a common origin/destination pair in an acyclic transportation network. The drivers' route choices are affected by their, relatively infrequent, perturbed best responses to global information about the current network congestion levels, as well as their instantaneous local observation of the immediate surroundings as they transit through the network. A novel model is proposed for the drivers' route choice behavior, exhibiting local consistency with their preference toward globally less congested paths as well as myopic decisions in favor of locally less congested paths. The simultaneous evolution of the traffic congestion on the network and of the aggregate path preference is modeled by a system of coupled ordinary differential equations. The main result shows that, if the frequency of updates of path preferences is sufficiently small as compared to the frequency of the traffic flow dynamics, then the state of the transportation network ultimately approaches a neighborhood of the Wardrop equilibrium. The presented results may be read as a further evidence in support of Wardrop's postulate of equilibrium, showing robustness of it with respect to non-persistent perturbations. The proposed analysis combines techniques from singular perturbation theory, evolutionary game theory, and cooperative dynamical systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.