Abstract-Cardiac myocytes have been traditionally regarded as terminally differentiated cells that adapt to increased work and compensate for disease exclusively through hypertrophy. However, in the past few years, compelling evidence has accumulated suggesting that the heart has regenerative potential. Recent studies have even surmised the existence of resident cardiac stem cells, endothelial cells generating cardiomyocytes by cell contact or extracardiac progenitors for cardiomyocytes, but these findings are still controversial. We describe the isolation of undifferentiated cells that grow as self-adherent clusters (that we have termed "cardiospheres") from subcultures of postnatal atrial or ventricular human biopsy specimens and from murine hearts. These cells are clonogenic, express stem and endothelial progenitor cell antigens/markers, and appear to have the properties of adult cardiac stem cells. They are capable of long-term self-renewal and can differentiate in vitro and after ectopic (dorsal subcutaneous connective tissue) or orthotopic (myocardial infarction) transplantation in SCID beige mouse to yield the major specialized cell types of the heart: myocytes (ie, Key Words: adult stem cell Ⅲ myocardial regeneration and angiogenesis C ardiac myocytes have been traditionally regarded as terminally differentiated cells that adapt to increased work and compensate for disease exclusively through hypertrophy. 1 In the past few years, compelling evidence has accumulated suggesting that the heart has regenerative potential. [2][3][4][5] The origin and significance of the subpopulation of replicating myocytes are unknown; these issues could be relevant to understand the for mechanisms coaxing endogenous cardiomyocytes to reenter the cell cycle and to the search for strategies to transplant cardiac progenitor cells. 6 In fact, although embryonic stem cells have an exceptional capacity for proliferation and differentiation, potential immunogenic, arrhythmogenic, and, particularly, ethical considerations limit their current use. Moreover, autologous transplantation of skeletal myoblasts has been considered because of their high proliferative potential, their commitment to a well-differentiated myogenic lineage, their resistance to ischemia, and their origin, which overcomes ethical, immunological, and availability problems. However, even if phase II clinical trials with autologous skeletal myoblasts are ongoing, several problems related to potentially life-threatening arrhythmia (perhaps reflecting cellular uncoupling with host cardiomyocytes 7 ) must be taken into account when this approach is considered. Furthermore, although cardiomyocytes can be formed, at least ex vivo, from different adult stem cells, the ability of these cells to cross lineage boundaries is currently causing heated debate in the scientific community, 8 with the majority of reports indicating neoangiogenesis as the predominant in vivo effect of bone marrow or endothelial progenitor cells. 9,10 This report describes the identification and...
The mTOR (mechanistic target of rapamycin) is a master regulator of several crucial cellular processes, including protein synthesis, cellular growth, proliferation, autophagy, lysosomal function, and cell metabolism. mTOR interacts with specific adaptor proteins to form 2 multiprotein complexes, called mTORC1 (mTOR complex 1) and mTORC2 (mTOR complex 2). In the cardiovascular system, the mTOR pathway regulates both physiological and pathological processes in the heart. It is needed for embryonic cardiovascular development and for maintaining cardiac homeostasis in postnatal life. Studies involving mTOR loss-of-function models revealed that mTORC1 activation is indispensable for the development of adaptive cardiac hypertrophy in response to mechanical overload. mTORC2 is also required for normal cardiac physiology and ensures cardiomyocyte survival in response to pressure overload. However, partial genetic or pharmacological inhibition of mTORC1 reduces cardiac remodeling and heart failure in response to pressure overload and chronic myocardial infarction. In addition, mTORC1 blockade reduces cardiac derangements induced by genetic and metabolic disorders and has been reported to extend life span in mice. These studies suggest that pharmacological targeting of mTOR may represent a therapeutic strategy to confer cardioprotection, although clinical evidence in support of this notion is still scarce. This review summarizes and discusses the new evidence on the pathophysiological role of mTOR signaling in the cardiovascular system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.