The poor survival of patients with human malignant gliomas relates partly to the inability to deliver therapeutic agents to the tumor. Because it has been suggested that circulating bone marrow-derived stem cells can be recruited into solid organs in response to tissue stresses, we hypothesized that human bone marrow-derived mesenchymal stem cells (hMSC) may have a tropism for brain tumors and thus could be used as delivery vehicles for glioma therapy. To test this, we isolated hMSCs from bone marrow of normal volunteers, fluorescently labeled the cells, and injected them into the carotid artery of mice bearing human glioma intracranial xenografts (U87, U251, and LN229). hMSCs were seen exclusively within the brain tumors regardless of whether the cells were injected into the ipsilateral or contralateral carotid artery. In contrast, intracarotid injections of fibroblasts or U87 glioma cells resulted in widespread distribution of delivered cells without tumor specificity. To assess the potential of hMSCs to track human gliomas, we injected hMSCs directly into the cerebral hemisphere opposite an established human glioma and showed that the hMSCs were capable of migrating into the xenograft in vivo. Likewise, in vitro Matrigel invasion assays showed that conditioned medium from gliomas, but not from fibroblasts or astrocytes, supported the migration of hMSCs and that platelet-derived growth factor, epidermal growth factor, or stromal cell-derived factor-1A, but not basic fibroblast growth factor or vascular endothelial growth factor, enhanced hMSC migration. To test the potential of hMSCs to deliver a therapeutic agent, hMSCs were engineered to release IFN-B (hMSC-IFN-B). In vitro coculture and Transwell experiments showed the efficacy of hMSC-IFN-B against human gliomas. In vivo experiments showed that treatment of human U87 intracranial glioma xenografts with hMSC-IFN-B significantly increase animal survival compared with controls (P < 0.05). We conclude that hMSCs can integrate into human gliomas after intravascular or local delivery, that this engraftment may be mediated by growth factors, and that this tropism of hMSCs for human gliomas can be exploited to therapeutic advantage. (Cancer Res 2005; 65(8): 3307-18)
AbstractΔ24-RGD is an infectivity-augmented, conditionally replicative oncolytic adenovirus with significant antiglioma effects. Although intratumoral delivery of Δ24-RGD may be effective, intravascular delivery would improve successful application in humans. Due to their tumor tropic properties, we hypothesized that human mesenchymal stem cells (hMSC) could be harnessed as intravascular delivery vehicles of Δ24-RGD to human gliomas. To assess cellular events, green fluorescent protein-labeled hMSCs carrying Δ24-RGD (hMSC-Δ24) were injected into the carotid artery of mice harboring orthotopic U87MG or U251-V121 xenografts and brain sections were analyzed by immunofluorescence for green fluorescent protein and viral proteins (E1A and hexon) at increasing times. hMSC-Δ24 selectively localized to glioma xenografts and released Δ24-RGD, which subsequently infected glioma cells. To determine efficacy, mice were implanted with luciferaselabeled glioma xenografts, treated with hMSC-Δ24 or controls, and imaged weekly by bioluminescence imaging. Analysis of tumor size by bioluminescence imaging showed inhibition of glioma growth and eradication of tumors in hMSC-Δ24-treated animals compared with controls (P < 0.0001). There was an increase in median survival from 42 days in controls to 75.5 days in hMSC-Δ24-treated animals (P < 0.0001) and an increase in survival beyond 80 days from 0% to 37.5%, respectively. We conclude that intra-arterially delivered hMSC-Δ24 selectively localize to human gliomas and are capable of delivering and releasing Δ24-RGD into the tumor, resulting in improved survival and tumor eradication in subsets of mice.
Although external beam radiation is an essential component to the current standard treatment of primary brain tumors, its application is limited by toxicity at doses more than 80 Gy. Recent studies have suggested that brachytherapy with liposomally encapsulated radionuclides may be of benefit, and we have reported methods to markedly increase the specific activity of rhenium-186 ((186)Re)-liposomes. To better characterize the potential delivery, toxicity, and efficacy of the highly specific activity of (186)Re-liposomes, we evaluated their intracranial application by convection-enhanced delivery in an orthotopic U87 glioma rat model. After establishing an optimal volume of 25 µL, we observed focal activity confined to the site of injection over a 96-hour period. Doses of up to 1850 Gy were administered without overt clinical or microscopic evidence of toxicity. Animals treated with (186)Re-liposomes had a median survival of 126 days (95% confidence interval [CI], 78.4-173 days), compared with 49 days (95% CI, 44-53 days) for controls. Log-rank analysis between these 2 groups was highly significant (P = .0013) and was even higher when 100 Gy was used as a cutoff (P < .0001). Noninvasive luciferase imaging as a surrogate for tumor volume showed a statistically significant separation in bioluminescence by 11 days after 100 Gy or less treatment between the experimental group and the control animals (χ(2)[1, N= 19] = 4.8; P = .029). MRI also supported this difference in tumor size. Duplication of tumor volume differences and survival benefit was possible in a more invasive U251 orthotopic model, with clear separation in bioluminescence at 6 days after treatment (χ(2)[1, N= 9] = 4.7; P = .029); median survival in treated animals was not reached at 120 days because lack of mortality, and log-rank analysis of survival was highly significant (P = .0057). Analysis of tumors by histology revealed minimal areas of necrosis and gliosis. These results support the potential efficacy of the highly specific activity of brachytherapy by (186)Re-liposomes convection-enhanced delivery in glioma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.