The electro-optical properties of most semiconductors and insulators of technological interest are dominated by the presence of electron-hole quasi-particles, called excitons. The manipulation of excitons in dielectrics has recently received great attention, with possible applications in different fields including optoelectronics and photonics. Here, we apply attosecond transient reflection spectroscopy in a sequential two-foci geometry and observe sub-femtosecond dynamics of a core-level exciton in bulk MgF2 single crystals. Furthermore, we access absolute phase delays, which allow for an unambiguous comparison with theoretical calculations. Our results show that excitons surprisingly exhibit a dual atomic- and solid-like character, which manifests itself on different time scales. While the former is responsible for a femtosecond optical Stark effect, the latter dominates the attosecond excitonic response. Further theoretical investigation reveals a link with the exciton sub-femtosecond nanometric motion and allows us to envision a new route to control exciton dynamics in the close-to-petahertz regime.
We present an innovative beamline for extreme ultraviolet (XUV)–infrared (IR) pump–probe reflection spectroscopy in solids with attosecond temporal resolution. The setup uses an actively stabilized interferometer, where attosecond pulse trains or isolated attosecond pulses are produced by high-order harmonic generation in gases. After collinear recombination, the attosecond XUV pulses and the femtosecond IR pulses are focused twice in sequence by toroidal mirrors, giving two spatially separated interaction regions. In the first region, the combination of a gas target with a time-of-flight spectrometer allows for attosecond photoelectron spectroscopy experiments. In the second focal region, an XUV reflectometer is used for attosecond transient reflection spectroscopy (ATRS) experiments. Since the two measurements can be performed simultaneously, precise pump–probe delay calibration can be achieved, thus opening the possibility for a new class of attosecond experiments on solids. Successful operation of the beamline is demonstrated by the generation and characterization of isolated attosecond pulses, the measurement of the absolute reflectivity of SiO2, and by performing simultaneous photoemission/ATRS in Ge.
The interplay between intra-band motion and inter-band transitions in photoexcited germanium is investigated by attosecond transient reflection spectroscopy. Advanced theoretical simulations interpret the sub-femtosecond optical response as charge carrier dynamics in the band structure.
The use of few-femtosecond, extreme ultraviolet (XUV) pulses, produced by high-order harmonic generation, in combination with few-femtosecond infrared (IR) pulses in pump-probe experiments has great potential to disclose ultrafast dynamics in molecules, nanostructures and solids. A crucial prerequisite is a reliable characterization of the temporal properties of the XUV and IR pulses. Several techniques have been developed. The majority of them applies phase reconstruction algorithms to a photoelectron spectrogram obtained by ionizing an atomic target in a pump-probe fashion. If the ionizing radiation is a single harmonic, all the information is encoded in a two-color two-photon signal called sideband (SB). In this work, we present a simplified model to interpret the time-frequency mapping of the SB signal and we show that the temporal dispersion of the pulses directly maps onto the shape of its spectrogram. Finally, we derive an analytical solution, which allows us to propose a novel procedure to estimate the second-order dispersion of the XUV and IR pulses in real time and with no need for iterative algorithms.
A reliable and complete temporal characterization of ultrashort pulses is a crucial requisite for the correct interpretation of time-resolved experiments. This task is particularly challenging in the extreme-ultraviolet (XUV) spectral region, where usually different approaches are employed depending on the exact temporal structure of the pulses. Here we propose and validate against both simulated and experimental data a novel approach for the reconstruction of ultrashort XUV pulses produced by high-order harmonic generation in gases for three different conditions: isolated attosecond pulses, attosecond pulse trains, and few-femtosecond pulses obtained by spectral selection of single harmonics. The core of the method, named simplified trace reconstruction in the perturbative regime (STRIPE), is a novel mathematical description providing a simplified picture of the two-color photoionization process. This new approach is capable of accurately retrieving the temporal characteristics of the XUV pulses with notably reduced computational costs compared to other currently used reconstruction techniques. Direct comparison to standard approaches proves it to be superior in terms of flexibility, reliability, and robustness against noise and acquisition artifacts, making STRIPE a promising tool for pulse characterization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.